Forrest McKee and David Noever, PeopleTec, USA
Question-and-answer formats provide a novel experimental platform for investigating cybersecurity questions. Unlike previous chatbots, the latest ChatGPT model from OpenAI supports an advanced understanding of complex coding questions. The research demonstrates thirteen coding tasks that generally qualify as stages in the MITRE ATT&CK framework, ranging from credential access to defense evasion. With varying success, the experimental prompts generate examples of keyloggers, logic bombs, obfuscated worms, and payment-fulfilled ransomware. The empirical results illustrate cases that support the broad gain of functionality, including self-replication and self-modification, evasion, and strategic understanding of complex cybersecurity goals. One surprising feature of ChatGPT as a language-only model centers on its ability to spawn coding approaches that yield images that obfuscate or embed executable programming steps or links.
Transformers, Text Generation, Malware Generation, Generative Pre-trained Transformers, GPT