Exploring Semantic Question Generation Methodology and a Case Study for Algorithmic Question Pool


Sumayyah Alamoudi and Amany Alnahdi, King Abdulaziz University, KSA


Assessment of student performance is one of the most important tasks in the educational process. Thus, formulating questions and creating tests takes the instructor a lot of time and effort. However, the time spent for learning acquisition and on exam preparation could be utilized in better ways. With the technical development in representing and linking data, ontologies have been used in academic fields to represent the terms in a field by defining concepts and categories classifies the subject. Also, the emergence of such methods that represent the data and link it logically contributed to the creation of methods and tools for creating questions. These tools can be used in existing learning systems to provide effective solutions to assist the teacher in creating test questions. This research paper introduces a semantic methodology for automating question generation in the domain of Algorithms. The primary objective of this approach is to support instructors in effectively incorporating automatically generated questions into their instructional practice, thereby enhancing the teaching and learning experience.


Ontology-based approach, Automatic question generation, Education, Algorithms, E-learning, assessment.