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ABSTRACT 
 
Text generation using GAN networks is becoming more effective but still requires new approaches to 

achieve stable training and controlled output. Applying feedback score to control text generation is one of 

the most important topics in NLP nowadays. Feedback or response is a natural part of conversations and 

not only consists of words, but also can take other shapes such as emotions, or other reactions. In dialogue 

processes feedback is a factor influencing the next phrase or reaction. Depending on this feedback or 
response we correct our possible answers by trying to change the tone, context, or even structure of the 

sentences. Applying feedback as part of the GAN model structure will give us new ways to apply feedback 

and generate well-controlled outputs with defined scores which is very important in real-world 

applications and systems. With GAN networks and their instability in training and unique architecture, it 

becomes trickier and requires new ways of solving this problem. The matter of feedback usages for text 

generation task using GAN networks we will review in this paper and experiment with integrating score 

values into GAN's generator model layers. 
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1. INTRODUCTION 
 

Controlled text generation can be viewed as a separate topic of the natural language process and 
text generation area since it has its own difficulties and output structure. Applying machine 

learning techniques for AI-driven systems requires re-designing neural network architectures, 

techniques, and even datasets. 
 

While text generation by itself is mostly sequence-2-sequence prediction, conversational text 

generation or sentiment-controlled text generation has important differences such as reactions to 

changing topics, emotions, and feedback from other participants. The generation of correct output 
also depends on a clear understanding of conversational parties of questions and responses. Even 

in natural human communication a misunderstanding often is a part of conversations. 
 

In this work, we will apply feedback to the evaluation part of the GAN network and its generative 
model. For the experiment, we will simplify the feedback form and assume that conversational 

participants will have a simple way to evaluate text. That way we will use a score metric the same 

as e-commerce websites use in their review systems with a range of 1-5 where 1 is very bad and 5 
is excellent. 

 

 

 
 

https://airccse.org/journal/ijci/Current2023.html
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1.1. Issues of GAN Architectures for Text Generation 
 

GAN models can perfectly solve image generation or filtering tasks but in the case of text 

generation, it faces specific obstacles depending on the context and irregular length of the texts. 
Losing context over the time steps is a natural behavior of any generative model. 

 

Usually, in n-gram text generation, we repeat N time steps in RNN (LSTM for example) to 
predict the next word in a sentence to create text. Latent vector z is the input hidden state h0 and 

the generator output G(z) is the sentence. But here we not training RNN to minimize cross-

entropy loss with respect to the target – we are training it to produce such output to make the 

discriminator think that sentence is “real” to minimize 1 – D(G(z)). 
 

When we are predicting the next word in RNN we are using the output of the softmax function, 

but this “next-word-generation” is not differentiable and we cannot do back-propagation, to get 
and calculate gradients of this operation of generating the next words. 

 

This problem doesn’t exist in the image type of data where generated data is continuous and can 
be passed directly from GAN’s generator to the discriminator. Solutions for text generation tasks 

using GAN models are: 

 

a. Applying reinforce learning algorithms and policy gradients, for example in the work 
“SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient” [1] 

b. The Gumbel-Softmax approximation (continuous approximation of the softmax function) 

c. Produce continuous output of the generator (auto-encoders) 

 

1.2. Related Works 
 
In the paper “Wasserstein GAN” [2] authors proposed an alternative way to the GAN architecture 

and training process. 

 
Two probability distributions on a certain metric space can be separated by the Wasserstein 

distance (also known as the Earth Mover's distance). It makes intuitive sense to think of it as the 

least amount of effort required to change one distribution into another. Work is defined as the 

sum of the mass of the distribution that needs to be transferred together with the distance that 
needs to be covered. The cost of the ideal transportation strategy is then the Wasserstein distance. 

 

Jensen-Shannon divergence minimization is the original GAN goal, while Wasserstein distance 
provides the following advantages: 

 

a. Since Wasserstein distance is continuous and almost differentiable everywhere, we may 
train the model to its best possible state. On the other hand, JS divergence has a vanishing 

gradients problem. 

b. As the distributions move closer to one another and more apart, the Wasserstein distance 

diverges, making it a useful statistic. 
c. Using Wasserstein distance in training is more stable than JS divergence.  

d. In the case of Wasserstein distance, the “mode collapse” issue happens less often. 

 
WGANs provide far more reliable training and a purposeful training goal.  

 

In the work “Emotional Text Generation Based on Cross-Domain Sentiment Transfer” [3] 
authors using the autoencoders model converted original negative review text to positive text. 

This work demonstrated the ability of the model to extract patterns of the original text and 
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reconstruct it with another emotional tone. Using autoencoders gives us new ways to use text 
representation in models' architecture. 

 

2. APPLYING FEEDBACK FOR TEXT GENERATION TASK IN GAN 
 

2.1. Structure and Types of Feedback 
 

The most popular datasets for NLP tasks usually have some sort of customer feedback, usually is 
kind of score (as an integer value) or positive-negative value. It is very useful when we do 

sentiment analysis which helps us to predict the emotional value of the text.  

 

This kind of feedback oversimplifies real-world scenarios, but it is suitable to build test cases and 
doing experiments. 

 

Working with a single value describing the reaction of the text (or generated output) is becoming 
straightforward and can be easily applied to the neural network structure. 

 

2.2. Applying Feedback to Discriminator’s Loss Function 
 

In the first case, we are using an approach to apply the reward to the discriminator during its 

process of calculating losses. The reward is a score given as feedback to the discriminator’s loss 
function. This approach can work well when we need to generate texts with higher score values. 

 

Discriminator (D) calculates 2 losses: one from real data and one from fake generated data. When 

the discriminator is trying to evaluate whether data is real or fake, with real data y is always 1. 
(y=1). That way we can calculate losses using binary cross-entropy: 

 

 
 

Formula 1. Loss calculation for real data 

 
Similar way we do losses calculation for evaluating fake data: 

 

 
 

Formula 2. Loss calculation for fake data 

 

Combining losses, we get the total loss of Discriminator: 
 

 
 

Formula 3. Total GAN’s discriminator losses 
 

The main task of the GAN model is to minimize this loss value: min[L(Discriminator)]. We will 

apply the reward to the real data loss function. The main intention is to: 
 

a. Have a bigger loss value if the reward is smaller than 1 and closer to 0 (0%) 

b. Have a smaller loss value if the reward is closer to 1 (100%) 
 

We apply feedback score to the discriminator as a factor, multiplying values according to: 
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R - feedback score as factor (in range 0…1, such as 0.9 = 90%, 0.5 = 50%, etc.), 0<R<1 
L = Loss of discriminator from real data training output (modulus): 

 

 
 

Formula 4. Updated discriminator losses 

 
That way we are re-calculating ground true values before the actual losses’ calculation. The final 

formula for calculating losses: 

 

 
 

Formula 5. Total discriminator losses 

 
That way model will try to produce output that has a higher review score. This way of applying 

feedback factor simplifies the experiment to get initial results that can be used for future research. 

 
Generator losses in GAN are calculated from discriminator losses. Need to mention that during 

the training of the generator, the discriminator is not updating its weights. The generator trying to 

fool the discriminator to classify fake data as real. That way generator loss function can be 
written as: 

 

 
 

Formula 6. Generator loss function 

 

Combining losses from the generator and discriminator gives us the next formula for the 
calculation of total GAN losses: 

 

 
 

Formula 7. Generator loss function 

 
It can be described as min / max game where the generator is trying to minimize the loss when 

the discriminator is trying to do the opposite: to increase losses. 

 

This simplified approach works well when we intent to have one direction score value to reward 
or penalize the discriminator. But for controlled output of model with score differentiation such 

simple algorithm doesn’t work. 

 

2.3. Feedback Score Differentiation 
 

To control model output and generate diverse texts depending on feedback score value we need 
to apply another approach. 

 

For this task, we need to change the structure for the input layers of the generator model to be 
able to feed text and score vectors together to the model.  
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The generator as input gets some noise (latent space) and score value, and as output generates 
text. Then we feed the discriminator with those values along with the real text. Then we calculate 

losses usual way and update the discriminator and generator accordingly to the algorithm. 

 

In this work, we are using a combination of autoencoders model along with GAN architecture.  
 

The autoencoders model (AE) consists of 2 parts: the encoder which takes text embeddings as 

input and produces abstract text representation and the decoder part which take this text 
representation and outputs reconstructed text. In the AE model encoder consists of an 

embeddings layer and a bi-directional GRU layer. The output of the encoder has shape [b, s, u] 

where: 
 

b – number of samples 

s – the fixed maximum length of texts (with zero paddings) 

u – number of hidden units 
 

Decoder consists of an embeddings layer, a GRU layer, an attention layer (to prevent losing 

context over the time steps), and a normalization layer. 
 

The input of our GAN network is text embeddings processed by the AE encoder part. That way 

we get abstract text representation to be able to feed the discriminator directly from the generator 
output. 

 

This way our model scheme will look like this: 
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Figure 1: GAN model with an applied feedback score 

 

Let’s define components of algorithm as: z – generated noise input, Xrt – real text input, Xrv - 
real text vector processed by AE, Xrs – real feedback score value, gp – gradient penalty (from 

WGAN). Then total losses of GAN’s model can be computed as: 

 

 
 

Formula 8. Total GAN losses with applied feedback score 
 

Need to notice that during GAN training we should use the same feedback score value for the 

generator’s input as the real text has in this training step. For example, if in real sample text has a 

score of 3 then we pass to generator noise with this score value. After we get the generator 
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output, we feed the discriminator real text which has a feedback score of 3 and generated a 
sample with the same score. It makes the discriminator effectively do its work. 

 

Algorithm 1: GAN with score differentiation 

Require: AE – Autoencoders, AE Encoder – encoder model of AE, AE Decoder – decoder model 

of AE, GAN – adversarial model, G – generator, D – discriminator, z – generated noise input, Xrt 

– real text input, Xrv - real text vector processed by AE, Xrs – real feedback score value, gp – 
gradient penalty, ae_num_epochs – training epochs for AE model, gan_num_epochs – training 

epochs for GAN model 

1: repeat 

2: for ae_num_epochs do: 

3:      for batch in data do: 

4:           pass text samples Xrt to encoder 

5:           generate AE Encoder’s output vector       
              representation Xrv 

6:           pass Xrv to AE Decoder 

7:           get AE Decoder’s output Yrt 

8:           compute AE losses as: Loss(Xrt - Yrt)   
9:           apply gradient descent 

10:    end for; 

11: until AE can produce the same output text as input 
12: Converting text samples Xrt to vectors Xrv using trained AE Encoder 

13: Combine text vectors and score values to GAN dataset: (Xrv, Xrs)  

14: Start adversarial training with new dataset 

15: repeat: 

16: for gan_num_epochs do 

17:      for batch in data do 

18:          generate noise z and pass z and Xrs to G  
19:          get G output as: G(z + Xrs)  

20:          get D output 1 as: D(Xrv)  

21:          get D output 2 as: D(G(z + Xrs))  
22:          compute G losses as: Loss(D(G(z + Xrs))) 

23:          calculate D losses as: Loss(D(Xrv)) 

24:          calculate discriminator total losses as: Ltotal = -Loss(D(Xrv)) + Loss(D(G(z + Xrs))) 

25:          calculate gradient penalty (gp)  
26:          add gp to D total losses: Ltotal + gp  

27:          calculate D gradients apply its optimizer 

28:           if train G on this step  
                   calculate G gradients  

                   and apply its optimizer 

29:      end for 

30: until GAN converges 
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3. EXPERIMENT 
 

3.1. Dataset and Data Pre-Processing 
 

For this experiment was used “Amazon Review Data” and its musical instruments reviews 
subset, which includes reviews with rating (score), texts, “helpfulness votes” and some metadata 

about the product.1 

 
In this experiment, we use NLTK (Natural Language Toolkit) for the tokenization of the 

sentences to make the dataset suitable for processing by the model. The complete dataset has 

been tokenized, allowing the model to map each distinct token to a corresponding embedding 

vector.  
 

At the beginning of the experiment were used Tensorflow’s tokenization module but during the 

work, this text pre-processing was optimized to work with NLTK and Gensim.  
 

We use Gensim's word2vec function that trains a skip-gram model. After cleaning and removing 

rare words final training dataset contains about 35,505 reviews with a vocabulary size of 10,382 

tokens. The maximum text length is 162 tokens.  
 

3.2. Model 
 

To make the model able to feed the discriminator directly from the generator output we are using 

Autoencoders representation of the sentence. That way training autoencoders before adversarial 

GAN training is a required step. 
 

Since the generator and discriminator are fully connected networks, we create ResNet with 

similar layers for both GAN components. 
 

To stabilize the training process, we use the gradient penalty algorithm. Gradient penalty set a 

restriction that requires the gradients of the discriminator's output relative to its inputs to have a 
unit norm. During training, gradient penalty requires to train the discriminator more iterations 

than the generator. 

 

3.3. Autoencoders (AE) Training 
 

After text pre-processing, we run autoencoders training. Autoencoders (AE) consist of encoder 
and decoder components. The main purpose of AE is to learn how to compress text into low-

dimensional vectors, so we use Gated Recurrent Unit (GRU) layer for both components of 

autoencoders. Decoder will try to reconstruct a sentence from a latent vector and hidden state. 

 
By utilizing an encoder network to condense information about each phrase into a finite vector, 

autoencoders are made to learn a low-dimensional representation of text. Reconstructing the input 

representation from the vector is the job of a decoder network.  
 

The encoder's latent representation and the prior hidden state are inputs utilized by the decoder to 

create a probability distribution that is used to choose the word at that time step during sentence 

reconstruction. 
 

                                                
1 Code is available at: https://github.com/e8dev/scut_gan 
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Using trainable embedding layers to each AE helps to incorporate the pre-trained word 
embeddings from our skip-gram model. This algorithm used teacher forcing in order to assure a 

speedier and more reliable training process for the AEs.  

 

For inference mode later we use the trained decoder to reassemble sentences from the output of 
the generator. As a result, the decoder is able to input its earlier forecast for the following time 

step. Inference mode is started by giving the generator's latent representation and the start of the 

sequence token (we encoded <Start> as the start token). Following that, the decoder output is 
projected onto the vocabulary size, and then we use a softmax operation to get tokens prediction. 

The next word in the sequence needs to be chosen from the resultant probability distribution until 

we get <End> token or text reaches its fixed maximum length. 
 

 
 

Figure 2. Autoencoders training losses 

 

3.4. Adversarial Training for GAN with an Applied Score to Discriminator’s Loss 

Functions 
 
After AE training is completed and AE model is able to encode text to latent space and decode it 

back, we run adversarial training.  Adversarial training heavily depends on the learning rate and 

has specific problems related to that such as vanishing gradients or mode collapse. 
 

In the experiment, we chose the learning rate after a few training attempts and faced the 

vanishing gradient problem even using the Wasserstein space approach. With the learning rate of 

0.001 and Adam optimizer, we faced a vanishing gradient problem, so we needed to change the 
learning rate to 0.0001 to have stable GAN training.  

 

In most cases, we need GAN to generate a wide range of outputs. But during training, we faced a 
situation in which the generator produced the same result for each random input. Such a situation 

is when the generator learns to only generate that output to make the discriminator thinks is a real 

text called “mode collapse”. 

 
The discriminator's best way is to learn to consistently reject that output if the generator begins to 

consistently produce the same output. But, if the subsequent iteration of the discriminator is 

getting stuck in a local minimum and fails to identify the optimal way, it will be far too simple 
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for the subsequent iteration of the generator to identify the discriminator's most likely result. 
Every generator’s iteration overoptimizes for a certain discriminator, and the discriminator never 

learns how to escape this local minimum. The generators, therefore, cycle through a constrained 

number of outputs. Two of the best ways to overcome such a situation are: 

 
a. Wasserstein loss – where discriminator learns to reject similar output of generator and 

generator forced to produce a new output.  

b. Unrolled GAN – where generator loss function takes not only current discriminator output 
but also its future versions. 

 

3.5. Results Evaluation 
 

We trained the model using samples from the Amazon Reviews dataset. After training 

autoencoders and constantly decreasing losses autoencoder model started to produce 
reconstructed text correctly around the 20th epoch. During adversarial training discriminator and 

generator, losses started to converge around the 20th epoch but only after the 100th epoch with a 

learning rate of 0.0001 WGAN model started to produce output that can be qualified as 
satisfying. Since this epoch model was able to generate text which more looks like positive 

review text. 

 

 
 

Figure 3. GAN training losses 

 

Generated output examples (dataset is reviews about musical instruments): 

 
“i have been playing guitar for <num> years and have had many different picks out there. these 

are great, and they are very easy to hold on.” 

 

“i bought this for my <num> year old son. he loves it. it is a great little amp for the price.” 
 

The model demonstrated the ability to produce output similar to human-generated text with a 

positive score. More training epochs with lower learning rates can increase the quality of a 
generated text. The sequence length of generated text like training dataset sample and overall 

satisfy requirements to output. Shorter sentences have better quality and are more predictable due 

to the shorter distance between words. 
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3.6. Adversarial Training with Controlled Output and Feedback Score 

Differentiation 
 
For this work, we changed GAN structure and added an additional input layer to GAN’s 

generator model. The generator takes the real score value and generates “noise” with the same 

shape as the text representation processed by AE’s encoder. Generator’s output and real text 

representation we pass to the discriminator, and it is calculating losses. 

 

With a learning rate of 0.0001 model was able to generate text and get context and its score 

relation after 30-40 epochs. The model demonstrated the ability to control text output based on 
feedback score value. 

 

At some moment model became not able to produce diverse output and started to generate the 
same texts again and again. This “mode collapse” happened when the generator finds data that 

makes the discriminator to be fooled easily. This can be avoided by implementing additional 

metrics and applying them as reward/penalty to the discriminator’s loss function. 

 
Table 1. Results evaluation 

 
 

Generated text 

 

Real text to compare 

BLEU 

score 

BERT 

score (F1) 

 

i bought this for my daughter 

who is just starting out learning 

how to play . it is a great learners 

guitar , but for the price , it is a 

wonderful ukulele . 

 

i bought this set for my husband and 

he is extremely happy ! he loves that 

it hooks onto his drums so he can 

grab one really fast if he drops one . 

the bag is amazing ! its very good 

quality nd all of the sticks match and 
are very nice . it couldnt believe how 

cheap they were when i told him ! 

 

0.0195 

 

0.8584 

i bought this for my daughter 

who is just starting to play guitar 

. she loves it . it is very light and 

is very sturdy . 

 

i always use elixirs for my electric 

and acoustic guitars . they feel 

awesome on your fingers , sound 

smoother and last longer than any 

other string ive ever used in about 

<num> years of playing . the pick that 

comes with this set are junk though , 

just toss them . i know theyre 

expensive but sometimes you get 

what you pay for . 

0.00584 

 

0.8489 

 

great product . great packaging . 
great price . great people to do 

business with.mahalo nui loa ( 

hawaiian : thank you very much ) 

for fulfilling your obligation in a 

glorious way.cheers 

 

i bought this set for my husband and 
he is extremely happy ! he loves that 

it hooks onto his drums so he can 

grab one really fast if he drops one . 

the bag is amazing ! its very good 

quality nd all of the sticks match and 

are very nice . it couldnt believe how 

cheap they were when i told him ! 

 
0.00308 

 

 
0.8087 

 

this is a great little dac for 

enabling me to any music stand . 

it is light enough to hold a lot of 

keyboards and it works great . 

 

these strings are really great ! martin 

strings have a nice tone to them and 

are also pretty sturdy . the tone is 

mellow and it doesnt take too much 

pressure to make a note . not to 

mention the fact that it is a three pack 
and in the event that one string breaks 

 

0.03080 

 

 

0.8494 
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you have two more to choose from . 

this is a great buy !  

 

i use this for my recording studio 

. it is a great mic for the price . it 

is very easy to use and a great 

price . 
 

 

i ordered this for a parts bass build i 

was doing for a client . its a good 

thing that i checked the thickness of 

the bass headstock and the length of 
the supplied screw . the screw is way 

too long and would have come out on 

the back side of the headstock . 

 

0.0078 

 

 

0.8530 

 

 

i have used this pedal for over 

<num> years and it has been a 

great price . it is easy to use and 

has a nice sound . 

 

 

it was exactly what i was looking for . 

perfect fit for a usa stratocaster 

<num> hole guitar . came packed in a 

nice sturdy flat packaging . wasnt 

warped which is usually what 

happens when you buy a pick guard 

online . 

 

0.0279 

 

 

0.8546 

 

 

i have used this pedal and it is a 
great addition to my pedal board . 

it does exactly what it is 

supposed to do . it is a classic 

distortion and a dirty ac booster 

with the drive . 

 

 

picks with no texture or friction 
enhancement are old technology . 

these pick are cutting edge . none 

better . possibility created by the 

multi flex feature and the grip . 

awesome . these make me a better 

player . i used to have trouble holding 

on to picks . problem solved . stress 

gone . 

 

0.00984 
 

 

0.8454 
 

 

i have been playing guitar for 

<num> years and have used many 

different types of strings over the 

years . 
 

 

great feel to them and nice sounding . 

they do seem to stay in tune a bit 

longer but then they are thicker than 

what i normally use . i think i will try 
these in the super slinky 

 

0.010070 

 

 

0.8399 

 

 

i have used elixir strings for years 

and they are great 

 

 

this is a nice pedal . appears to be 

built good in a rugged case . i like to 

use just a touch of phase to make my 

guitar growl and this does the job 

nicely ! cant beat it for the price ! 

 

0.003086 

 

 

0.8499 

 

 

this is a great little dac for 

enabling me to any music stand . 

it is light enough to hold a lot of 

keyboards and it works great . 

 

ive used these strings for years and 

the tone and quality are top notch . its 

good to experiment with others 

brands as well , but you really cant 

lose with these babies . 

 

0.006337 

 

 

0.8375 

 

 

4. CONCLUSION 
 

We successfully applied feedback score for text generation and got promising results in its simple 
form and with controlled output. Our model can produce text reflecting the original feedback 

score. 

 

In table 1, we can see the results of generated samples and measured BLEU and BERT scores. 
The BERT algorithm has a better ability to catch context without relying on sample length which 
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gives better results. Most of the generated samples have about 0.85 BERT score. BERT algorithm 
correctly recognizes text context (in our case musical instruments) and gives a better score.  

 

Generated texts are very well structured and show great potential to improve results in future 

experiments. The abstract idea behind this feedback application can be used not only in 
conversational or text-generation tasks but also in other areas. 

 

4.1. Problems and Limitations 
 

The model has tended to generate repetitive samples after some period of training. This “mode 
collapse” is another problem that should be solved in future works by increasing the size of the 

dataset or implementing additional metrics. In 2018 Richardson and Weiss [4] proposed a new 

method named Number of “Statistically-Different” bins (NDB). This metric can be used to show 

how generator sampling noise differs from defined fixed noise. Calculating this NBD metric 
during training gives us the ability to reward or penalize GAN losses which makes the generator 

produce more diverse output. 

 

5. FUTURE RESEARCH 
 

One of the most important parts of the conversational text is feedback because depending on the 

response we can build the next part of the conversation and make a logical sequence. The 

subjects of future research should become feedback and its types and forms. The feedback that 
the model can use to score and evaluate answers can be not only represented as some integer 

value but can take different shapes and types. 

 
For example, those responses can be text messages, reading emotions (or reactions) from videos 

and pictures, and evaluating responses accordingly, or they can be sensors’ signals from medical 

devices. Future works can include the classification of such responses and each of these types 
requires detailed work to make a correct interpretation of them. 

 

Although GANs are relatively new in the field of machine learning, they have achieved 

outstanding success in several areas, such as computer vision. It was successful in the field of 
sequence production as well such as text generation, and this work's findings show different ways 

to apply feedback in text generation tasks using GAN networks. 
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