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ABSTRACT 
 
This study proposes a scalable asset selection and allocation approach using machine learning that 

integrates clustering methods into portfolio optimization models. The methodology applies the Uniform 

Manifold Approximation and Projection method and ensemble clustering techniques to preselect assets 

from the Ibovespa and S&P 500 indices. The research compares three allocation models and finds that the 

Hierarchical Risk Parity model outperformed the others, with a Sharpe ratio of 1.11. Despite the 
pandemic's impact on the portfolios, with drawdowns close to 30%, they recovered in 111 to 149 trading 

days. The portfolios outperformed the indices in cumulative returns, with similar annual volatilities of 

20%. Preprocessing with UMAP allowed for finding clusters with higher discriminatory power, evaluated 

through internal cluster validation metrics, helping to reduce the problem's size during optimal portfolio 

allocation. Overall, this study highlights the potential of machine learning in portfolio optimization, 

providing a useful framework for investment practitioners. 
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1. INTRODUCTION 
 

1.1. Motivation 
 

Machine learning has received significant attention in modern financial research as a scalable 

approach to portfolio selection. One of the recurring challenges in this field is optimizing 
portfolios through the selection and appropriate allocation of stocks. An important consideration 

in portfolio selection is evaluating the intrinsic value of companies through fundamental analysis, 

in addition to analyzing technical indicators to strike a balance between these approaches and 

gain a comprehensive view of selected assets while minimizing losses during market downturns 
[1, 2, 3, 4]. This critical area of study in machine learning, data mining, and data science presents 

significant potential for advanced algorithmic techniques and data-driven models. In finance, 

people commonly employ classic models like the ones suggested by Markowitz [5]. Among 
these, the MV model stands out for achieving an optimal allocation of financial assets through 

diversification basedonthe expected risk of the assets for a given target return. 

 
The Mean-Variance model was the genesis for numerous research studies that 

extendedMarkowitz's [5, 6] work and supplemented many insights into portfolio formation. Here 

we refer to some of these studies that address the challenges encountered when using portfolio 

optimization in practice, including boundary and cardinality constraints, transaction costs, and the 

https://airccse.org/journal/ijci/Current2023.html
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sensitivity in estimates of expected returns and covariances [7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 3, 
16, 17], among others. Such examples do not necessarily indicate that the risk-return optimization 

theory needs to be revised. Instead, the classical framework must modify itself to achieve 

reliability, stability, and robustness concerning model estimates and errors. These extensions 

further confirm that the MV model plays a significant role in portfolio management. During 
investment decision-making, financial portfolio allocation complex portfolio optimization 

methods without inputting high-quality assets a step before portfolio allocation; however, few 

researchers perform preliminary asset selection [16, 18]. [19] warns that many assets in a 
portfolio can have ramifications due to the curse of dimensionality and high transaction costs. 

 

In this context, preliminary asset selection is fundamental for portfolio management, and 
acardinality constraint overcomes this obstacle that will impose an upper bound on the number of 

assets. Although this type of optimization problem has advantages over its relaxation, the model 

inherits computational difficulties because the cardinality constraint transforms the problem into 

a mixed-integer program of an NP-complete class, as evidenced in the research of [20, 10]. 
 

Because of the reported difficulty, an alternative approach to the cardinality constraint is to 

reduce the size of the problem before moving on to the optimal portfolio allocation. Reduction, in 
this case, is a decision to select certain assets from a larger universe. In related literature, recent 

developments in machine learning have brought significant opportunities for integrating 

clustering methods as a size reduction or preprocessing tool for the MV model. The results of 
these studies suggest greater efficiency for the output of the portfolio optimization model by the 

clustering algorithm having the potential to minimize further the measured risk in the MV model 

and the ability to improve portfolio reliability in terms of the ratio of predicted to realized risk 

[21, 22, 19]. As a powerful replacement for the cardinality constraint in the MV model, clustering 
methods not only satisfy asset selection and portfolio diversification but also increase the 

reliability of the portfolio, which is affected by errors in the sample mean and standard deviation 

estimators of returns [23, 21]. Still, in this sense, methods based on dimension reduction try to 
preserve, in lower dimensional representations, the information present in the original data set. 

This feature is present in both linear and nonlinear methods; the latter, a result of development in 

our research, adopted the recent approach called UMAP, which estimates a high dimensional data 

topology and uses these features to build a low dimensional representation, accurately preserving 
both local and global data structure relationships, with shorter execution time [24, 25, 26, 27]. 

The numerical experiments present in [28, 29] highlight tthe feasibility and effectiveness of 

UMAP in processing data in complex systems such as the financial market. 
 

Kalayci et al. [1] conducted a comprehensive review of the literature devoted to mean-variance 

portfolio optimization in recent articles from the last two decades and evidenced that 
machinelearning algorithms represent 12% of the solutions applied to the MV problem, with the 

K-meanstechnique prominently in the most present subcategory of research; therefore they have 

not yet reached an adequate level of maturity. Automated asset clustering methods for 

diversification purposes are recent innovations and present a gap for future developments since 
the explicit knowledge of the MV model concerning performance measurement is still limited 

[30, 19]. Researchers currently use clustering methods in portfolio construction to group highly 

correlated stocks and then use these clusters to build the MV portfolio, as demonstrated by [23]. 
Meanwhile, Marvin [30] proposed a clustering approach with an alternative measure to 

correlation similarity, which proved robust in times of crisis, resulting in high-performing 

portfolios tested in pre and post-crisis periods. Paiva et al. [31] proposed an investment decision 
model that uses Support Vector Machines (SVMs) to classify assets and combines them with the 

MV model to form an optimal portfolio; according to the results, the classifier showed higher 

discriminatory power, converging positively to a lower cardinality, with a daily average of seven 

assets in the portfolio. Tayali [19] incorporates three cluster analysis methods into the mean-
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variance portfolio optimization model for the pre-selection of assets. A representative stock is 
selected taken from each cluster that forms a set of medoids to make up the inputsubset of the 

MV problem; the results show that using the clustering method with the Euclidean distance 

pattern significantly improves the portfolio selection and allocation process of the optimization 

model. Wang et al. [16] studied a hybrid method combining a recurrent Long Short-Term 
Memory (LSTM) neural network with the MV model, which optimizes portfolio formation in 

combination with asset pre-selection. This research has shown that merging machine learning 

methods in the asset pre-selection stage with the MV optimization model can provide a new 
perspective for research in finance.  

 

1.2. Objective 
 

The goal of this research is a scalable quantitative proposal via machine learning for asset 

selection and allocation through clustering. 
 

Two stages divide the essence of this model: asset selection and portfolio optimization. The 

firststage involves integrating the UMAP method in the dimensional transformation of the time 
series into a new input for the clustering models. Then we apply ensemble algorithms to cluster 

the assets using the methods: i) K-means, ii) PAM, and iii) AHC to maximize the objective 

function composed of fundamental and technical data and finally to compose the input subset of 

the MV problem. In the second stage, we use the assets preselected in the previous step and 
perform the allocation with the HRP model, comparing the optimal portfolio results with two 

other models: i) MV and ii) IVP. A backtesting framework follows in each continuous window of 

the investment horizon via Monte Carlo simulation and careful analysis of the portfolio's 
financial performance with out-of-sample data. As a result of this process, we sought to reduce 

the number of assets to circumvent the cardinality constraint and provide better inputs to the 

optimization models. Also, in this sense, it offers investors more stable and diversified portfolios 
with better Sharpe ratios in the out-of-sample results [32, 33, 3]. 

 

1.3. Contributions 
 

This article provides important contributions to the field of finance by addressing several gaps in 

the literature. Firstly, the study highlights the limited use of machine learning algorithms in 

mean-variance portfolio optimization solutions, with only 12% of studies utilizing these 
techniques in the last two decades. This finding underscores the need for further research to 

explore the potential of machine learning algorithms in portfolio optimization. 

 
Secondly, the article identifies the lack of maturity in automated asset clustering methods for 

diversification, leaving room for future developments. Specifically, the K-means technique has 

been the most commonly used in the subcategory of research utilizing machine learning 
algorithms. 

 

Furthermore, as noted in previous research, the study addresses the limited explicit knowledge of 

the MV model concerning performance measurement. By addressing these gaps, this article 
provides a useful framework for future research in portfolio optimization. 

 

In terms of methodology, this article proposes a dynamic walk-forward method that updates 
cluster parameters for asset selection in each investment horizon window, improving the model's 

ability to generalize to new data and avoid overfitting. This approach significantly improves over 

existing methods and accurately represents the underlying relationships between assets. 
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Additionally, the article introduces a novel objective function for the asset selection process that 
considers various financial performance and risk metrics for each company, enhancing the risk-

return tradeoff for selected assets. 

 

Another contribution of this study is the availability of the application algorithm on Github, 
making the approach scalable and enabling other researchers and financial market professionals 

to reproduce the results obtained in this study. 

 
Finally, the article compares and validates the results from three allocation models using out-of-

sample data, comprehensively evaluating the proposed approach's effectiveness. 

 
Overall, this article provides innovative methodologies and techniques that can improve the 

accuracy and reliability of portfolio optimization models. These contributions have significant 

implications for financial practitioners, providing them with better tools for managing risk and 

maximizing returns. 
 

2. MODERN PORTFOLIO THEORY 
 

Markowitz's [5] introduction of the concept of risk in finance as the variance or deviation from an 
average marked a turning point in the development of Modern Portfolio Theory (MPT) [5, 6]. 

The theory proposed the classic MV mathematical model [2], which quantifies the degree to 

which returns deviate from the mean return by weighing the squared deviations of individual 

asset returns from their expected return by their respective probabilities or weights and dividing 
this sum by the total weight or probability of the portfolio. This statistical measure provides 

insight into the level of risk or uncertainty associated with an asset or portfolio, making it a 

valuable tool for investors seeking to optimize their portfolios. As a result, this theory has 
revolutionized the field of finance and is widely adopted in investment management, known as 

the Modern Portfolio Theory. 

 
However, as forecasts do not obtain sufficient accuracy [33], quadratic optimization models such 

as MV open possibilities for the emergence of new portfolio allocation methodologies, especially 

those that have, in the covariance matrix, its main modeling object, among them, stands out the 

Risk Parity [14]. The 2008 global crisis popularized the Risk Parity financial model from a 
theoretical and practical standpoint. Within this context, the model seeks to diversify risk rather 

than capital among assets, restricting them from contributing equally to the portfolio's overall 

volatility and being less sensitive to errors in parameter estimates, such as those related to the 
covariance matrix [34, 35]. The Inverse-Variance Portfolio (IVP) is a classic framework 

comparable to Risk Parity. However, it does not avoid instability problems in the face of many 

conditions [36]. 

 
In addition to the traditional approaches cited above [3, 33] introduced Hierarchical Risk Parity 

(HRP), which applies complex models, including graph theory and unsupervised machine 

learning, involved in this study. The methodology uses the IVP in a quasi-diagonal matrix by 
grouping the weights into bisections of a subset. The Hierarchical Risk Parity (HRP) method 

calculates the weights of groups of similar assets iteratively using inverse variance, constructing a 

quasi-diagonal matrix by dividing the assets into subsets. The approach involves three main 
steps: Tree Clustering, Quasi-Diagonalization, and Recursive Bisection, which are explained in 

more detail in [3, 33]. 

 

Problems of instability in the portfolio performance of quadratic optimizers are present in recent 
studies by [37, 3, 33] and [38] that suggest a methodology that produces less risky out-of-sample 

portfolios compared to the traditional risk of the parity method and MV, and more stable 
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portfolios. In the numerical example of [33], the performance of the out-of-sample portfolio is 
evaluated through Monte Carlo simulation, improving the Sharpe by about 31.3% (for a broader 

discussion of in-sample vs. out-of-sample performance, see [39]. Hierarchical clustering 

generates robust, diversified, and better risk-adjusted out-of-sample performance portfolios than 

traditional optimization techniques [40, 41]. Although its features are attractive, the empirical 
literature on out-of-sample portfolio performance compared to the HRP approach is still very 

scarce [41]. 

 

3. DIMENSIONALITY REDUCTION AND CLUSTERING METHODS 
 

This section briefly reviews the machine learning techniques selected for this study. We have 

chosen three algorithms that represent important classes of grouping. Each algorithm employs a 

different criterion, according to the type of feature they represent: AHC, which has a concept of 
chaining the data. K-means and PAM fall into the category of compactness with different 

approaches; the first (K-means) is an iterative algorithm that minimizes the sum of the distances 

of each pattern to the centroid of each cluster, overall groups, while the second (PAM) seeks to 
reduce the sum of dissimilarities, which guarantees the compactness property of the objects and is 

less sensitive to outliers and noisy data. And as a preprocessing technique, we use UMAP, a 

graph learning algorithm for dimensional data reduction. 
 

3.1. Uniform Manifold Approximation and Projection 
 
Authors [24] developed UMAP for dimension reduction, classified as a k-neighbor-based graph 

learning algorithm for unsupervised learning problems. It is scalable, practical, computationally 

unconstrained in embedding dimension, and applied to real-world data. The mathematical 
construct comprises multiple learning techniques, topological data analysis, and fuzzy logic; see 

[24, 25] for details on the mathematical foundations. 

 

3.2. K-Means 
 

James McQueen first proposed k-means in 1967 [42], and it has become one of the most widely 
used partitional clustering models due to its relative simplicity and ability to scale to large 

datasets. The mathematical basis of k-means involves selecting k random data points as the initial 

centroids in the first step of the algorithm. Next, the algorithm iteratively moves the data points 

between clusters to improve the clustering criterion and calculate the minimum distance between 

each data point and the 𝑘 centroids to associate each data point with its nearest centroid. The 

squared error (ESS) for a cluster containing 𝑘 clusters is the sum of the cluster variation, where 𝑖 
denotes the sample 𝑖, and 𝑗 denotes the centroid 𝑗. The Euclidean distance is the most common 
metric to calculate the distance between two points [43]. 

 

3.3. Partition Around Medoids 
 

Another clustering algorithm we used was PAM, proposed in 1987 by Kaufman and 

Rousseeuw[44]. The PAM method is more robust because it minimizes the sum of the 

dissimilarities and does not rely on an initial assumption for the centers of the clusters, as with K-
means. In addition, it is less sensitive to outliers and noisy data, as alluded to earlier. 

 

 
 

 

 



International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023 

28 

 

3.4. Agglomerative Hierarchical Clustering  
 

Finally, the third algorithm we use is AHC, which chains the data together and aims to identify a 

clustering hierarchy in the dataset. The agglomerative (bottom-up) approach starts with 𝑛 objects 

in 𝑘 clusters where level 1 presents 𝑛 clusters of an object, and level 𝑛 presents a cluster with all 

objects that form the sequence of partitions grouping the clusters successively. Thus, when 

clustering two objects at some level, they remain part of the same group at higher levels, building 
a hierarchy of clusters [45, 46]. This strategy facilitates the exploration of the data at different 

levels of granularity and easy use of any form of similarity or distance, and it further allows the 

use of any attribute. 

 
In addition to the calculated distance between the elements, it is necessary to define a linking 

method to translate the distance between the clusters described in step 2 of the algorithm. We 

chose to use Ward's method [47] among the various types of linking strategies described in the 
paper, as it minimizes the total variation within the cluster after merging two clusters into one. 

This method calculates the distance between clusters by considering the sum of squared 

differences between their observations. At each step, the method considers the union of all 

possible cluster pairs and merges the two clusters whose fusion results in a minimum increase in 
information loss [48]. This approach is particularly effective for datasets with continuous 

variables, as it produces clusters of comparable sizes and shapes that can be easily understood 

and visualized. Additionally, Ward's method performs well for quantitative variables and has 
been the only clustering strategy in a previous study [19] that resulted in a positive outcome for 

investors [48]. The minimum loss in terms of the sum of squares of errors defines Ward's method. 

 

3.5. Clustering Validation 

 
As one of the main parameters of clustering techniques is the cluster number 𝐾 and for its 

specification, we adopted two measures of internal validation, the Silhouette Coefficient and the 

Davies-Bouldin Index. The Silhouette Coefficient [49] aims to evaluate a partition present in the 
structure of the data set. The silhouette measure compares the disparity within each cluster and 

between clusters obtained by implementing a clustering algorithm. The Davies-Boudin index [50] 

is a metric to evaluate the partitions of the clustering models that, unlike other methods, can be 
supervised or unsupervised. This index calculates the relationship between intragroup dispersion 

and intergroup similarity, and the selection of the optimal number of clusters will be the one with 

values closest to zero for well-partitioned clusters. 

 

4. METHOD 
 

The data consists of twelve fundamental and eight technical indicators calculated from the 

information in the companies' financial statements and daily closing asset prices of companies 
listed in two different indices. The Ibovespa, the most important indicator of the average 

performance of Brazilian stock market prices traded on the B3 (an acronym for Brazil, ''Bolsa'', 

''Balcão''), formed by a hypothetical portfolio of the stocks with the highest trading volume in 

recent months; at the beginning of 2022, it was composed of 93 stocks from 90 companies [51]. 
The S&P 500 is widely considered the best indicator of USA large-cap stocks that gathers the 

500 leading companies and represents approximately 80 percent of the available market 

capitalization [52]. The time chosen was from January 1, 2016, to December 31, 2021 (i.e., six 
years of data resulting in 1504 scenarios of daily changes in the indices). The source code of our 

framework, database, and experiments are publicly available at: 

https://github.com/ComputerFinance/SCDD 



International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023 

29 

 

The variables are Debt ratio (Debt-to-Equity (DTEQ), Debt-to-EBITDA (DTEB)), Liquidity ratio 
(Current ratio (CR), Quick ratio (QR)), Profitability ratio (Net Profit Margin (NPM), Return on 

Assets (ROA), Return on Equity (ROE), Log-return Trimestral (R), Internal Rate of Return 

(IRR), Sharpe Ratio (SR)), Volatility ratio (Bollinger Bands Quarterly (BB), Volatility (V), 

Value at Risk (VaR), Maximum Drawdown (MDD), Beta (B)) and Market ratio (Price-to-
Earnings (PTE), Price-to-Book (PTB), Enterprise Value (EV), Enterprise Value-to-EBITDA 

(EVTE), Price-to-Free Cash Flow (PFCF)). 

 
For evaluating the performance of the optimized portfolios, we use the closing asset price data 

from Yahoo Finance for the same period as the indicators dataset. We compare the three 

optimization methods (HRP, MV, and IVP) to validate the portfolio's financial performance using 
in-sample and out-of-sample data and use the most popular metrics in portfolio management for 

long-term horizons, which are the Herfindahl-Hirschman index, average portfolio return, 

annualized volatility, Sharpe ratio, maximum drawdown, and beta index. 

 
The proposed framework, depicted in Figure 1, consists of two stages. The first stage is 

responsible for asset preselecting. The second stage is responsible for optimal portfolio 

allocation. 
 

 
 

Figure 1. Flowchart for pre-selection of stocks using the clustering approach in step 1 and portfolio 

allocation in step 2. 

 

4.1. First Stage Analysis: Asset Selection 
 

To clarify the method, the first step involved extracting time series data for 538 stocks in the 
Ibovespa and S&P 500 indexes, using 20 fundamental and technical indicators from January 1, 

2016, to December 31, 2021. This six-year data resulted in 1504 scenarios of daily changes in the 

indices. The dataset was then divided into quarters, labeled as 𝑄𝑡, where 𝑡 =  [1, 2, 3, … ,24]. For 

each quarter 𝑡, we included each Stock's indicators and the quarterly average stock price as an 

additional feature. Subsequently, we processed the data individually, incorporating the pre-

selection steps. Figure 1 provides a visual representation of this first step in the process. 

 
After dividing the dataset into quarters, we applied the method UMAP dimensionality reduction 

model to the 𝑄𝑡  sets in the next stage of our analysis. UMAP is a model that can reduce a high-

dimensional dataset to a lower-dimensional one, generally two or three dimensions, by adjusting 
its main parameters to focus on a global or local aspect of the data. We utilized this model as a 

preprocessing step for clustering models to improve the distance relationships between data 

points and enhance computational performance. These dimensionality reduction models reduce 

the input data's dimensionality for clustering methods and can also unfold complex high-
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dimensional structures, allowing for better results. Furthermore, the data showed different 
distributions of elements between clusters, even without using a dimensionality reduction model 

as a data preprocessing step. This approach allowed us to evaluate the performance of each 

clustering method and select the best one for our portfolio optimization model. 

 
After preprocessing the data with UMAP, we applied the K-means, PAM, and AHC clustering 

models to generate clusters from the 𝑄𝑡 set. The literature suggests various indexes for specifying 

and evaluating the appropriate number of clusters present in the data structure. While there is no 
consensus on which measures to use, [53] summarize the main aspects ofusing an evaluation 

index, with internal validation measures being among the most relevant. These measures assess 

the degree to which an obtained partition is justified, considering the data's compactness and 
separability. Therefore, we opted to use the Silhouette Coefficient and the Davies-Bouldin Index. 

 

In the next stage, we present our approach to selecting stocks for each cluster and model based on 

the objective function defined in Equation 3. To break down the objective function into financial 
metrics (Equation 1) and risk factors (Equation 2), we aim to evaluate portfolio performance and 

exposure to particular sources of uncertainty. We express the function as follows: 

 
The sum of the financial metrics that measure each company's financial health and performance 

denoted as Metrics, is obtained by Equation 1: 

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 =  𝐶𝑅 +  𝑄𝑅 +  𝑁𝑃𝑀 +  𝑅𝑂𝐴 +  𝑅𝑂𝐸 +  𝐼𝑅𝑅 +  𝑆𝑅, (1) 
 

Where 𝐶𝑅 is the current ratio, 𝑄𝑅 is the quick ratio, 𝑁𝑃𝑀 is the net profit margin, 𝑅𝑂𝐴 is the 

return on assets, 𝑅𝑂𝐸 is the return on equity, 𝐼𝑅𝑅 is the internal rate of return, and 𝑆𝑅 is the 
Sharpe ratio. 

 

Similarly, the sum of the risk factors that measure each firm's exposure to financial and market 

risks, denoted as Risks, is obtained by Equation 2: 
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2: 𝑅𝑖𝑠𝑘𝑠 =  𝐷𝑇𝐸𝐵 +  𝐸𝑉𝑇𝐸 +  𝐷𝑇𝐸𝑄 +  𝑃𝑇𝐸 +  𝑃𝑇𝐵 +  𝑃𝐹𝐶𝐹 +  𝑉 +  𝑉𝑎𝑅 +
 𝑀𝐷𝐷 +  𝐵, (2) 

 

Where 𝐷𝑇𝐸𝐵 is the debt-to-EBITDA, 𝐸𝑉𝑇𝐸 is the enterprise value-to-EBITDA, 𝐷𝑇𝐸𝑄 is the 

debt-to-equity, 𝑃𝑇𝐸 is the price-to-earnings, 𝑃𝑇𝐵 is the price-to-book,  𝑃𝐹𝐶𝐹 is the price-to-free 

cash flow, 𝑉 is the volatility, 𝑉𝑎𝑅 is the value at risk, 𝑀𝐷𝐷 is the maximum drawdown, 𝐵 is the 
beta. 

 

The objective function of the stock selection model for each cluster is defined in Equation 3. The 
objective is to maximize the portfolio score, calculated by dividing the financial metrics by the 

risk factors. A single score represents the portfolio's overall quality for the time 𝑡. Maximizing 

the portfolio score leads to a more precise selection of stocks in each cluster and, consequently, a 

better overall portfolio performance. 
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3: 𝑂𝑏𝑗𝑡 = 𝑚𝑎𝑥 (
𝑀𝑒𝑡𝑟𝑖𝑐𝑠

𝑅𝑖𝑠𝑘𝑠
) (3) 

 

The objective function, Equation 3, calculates two pre-selection parameters: (𝑖) 𝑂𝑏𝑗𝑠𝑡𝑜𝑐𝑘𝑡
, which 

is the stock objective function in 𝑄𝑡, and (𝑖𝑖) 𝑂𝑏𝑗preselect𝑡
, which is the average objective 

function of 𝑃preselect𝑡
 in 𝑄𝑡. As the asset selection is an iterative quarterly process, when 𝑡 =  1, 

the set referring to 𝑄𝑡+1 is returned. Then, the intersection stocks between the consecutive 
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preselected portfolios 𝑃preselect𝑡−1
  and 𝑃preselect𝑡

 are identified and kept in 𝑃preselect𝑡
. The 

stocks that do not belong to the intersection must meet the condition 𝑂𝑏𝑗𝑠𝑡𝑜𝑐𝑘𝑡
≥ 𝑂𝑏𝑗preselect𝑡−1

, 

ensuring that the preselected stocks progressively improve the average objective function of the 
portfolio over the quarters. 

 

In each quarter of the dataset, we apply the method iteratively to select the optimal number of 

clusters defined by 𝐾 using ensemble of three algorithms: K-means, PAM, and AHC. We 

calculate the optimal 𝐾 in each continuous window using the clustering validation. The 

algorithms generate a score by maximizing the Silhouette Coefficient and minimizing the Davies-

Bouldin Index to obtain the cluster number. When applying the clustering method, we average 

the values to determine the optimal cluster number with a value of 𝐾 =  {2, . . . ,20}. 

 

In the final step, the algorithm selects a subset of $n$ stocks. It divides the financial time series 

dataset into a cluster structure of 5 and selects 2 representative assets from each cluster for the 
three clustering methods with the highest objective function values in Equation 3. The resulting 

subset reduces computational complexity and serves as the input data for the portfolio 

optimization methods, HRP, MV, and IVP, based on the target number of the entire universe of 
assets. 

 

4.2. Second Stage Analysis: Portfolio Allocation 
 

In the second step, we obtain the resulting 𝑃preselect𝑡
 by taking the union of the two previous 

conditions and repeating the process until 𝑡 =  24, when we have the final 𝑃preselect𝑡
 for HRP, 

MV, and IVP portfolio optimization methods. 

 
The resulting subset serves as input for the asset allocation task, where assets are reordered to 

similar groups, ones together and dissimilar ones further apart. This reordering helps investors 

make more informed asset allocation decisions and build more diversified portfolios, as 
demonstrated in previous studies [33, 3]. 

 

The three proposed optimization methods, which include the traditional Markowitz mean-

variance (MV) approach, the hierarchical risk parity (HRP) method, and the inverse-variance 
portfolio (IVP) technique, have demonstrated promising results in-sample. However, it is 

important to note that the portfolio with the minimum variance in the sample may not necessarily 

have the minimum variance out-of-sample. This raises concerns about the reliability of these 
methods and the need for further evaluation. 

 

To address this issue, we applied the Monte Carlo method to evaluate the performance of 

different portfolio allocation methods out-of-sample. Monte Carlo simulations generate random 
data by sampling from a probability distribution, useful when actual data are unavailable or to 

evaluate a method's performance on hypothetical data. This study used the multivariate normal 

distribution to generate hypothetical stock returns based on historical data. 
 

Although the minimum variance (MV) portfolio had a lower risk than the in-sample portfolio of 

the traditional risk parity's (HRP) allocation, it is important to note that the portfolio with the 
minimum variance in-sample may not necessarily have the minimum variance out-of-sample. To 

avoid the potential overfitting and selection bias issues. 

 

Specifically, we simulated 10,000 portfolios using the same data for all methods and assessed 
each allocation approach's in-sample and out-of-sample performance. To evaluate the 

performance of each method on the datasets, the variances of the portfolios were distributed into 
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histograms based on 260 observations, equivalent to a one-year frequency. We calculated the 
average of the in-sample and out-of-sample variance distributions for this purpose. 

Monte Carlo simulations are a tool for identifying methodological features that confer a 

preferential status over others, irrespective of arbitrary exceptions. These simulations enable us to 

assess and compare the efficacy and reliability of different approaches, thereby enhancing the 
accuracy and robustness of our model. 

 

5. RESULTS 
 
Our analysis examined the K-means clustering model with and without using UMAP in the 

preprocessing step. We applied the Silhouette Coefficient and Davies-Bouldin Index in both 

scenarios to determine the optimal number of clusters. As a result, two and five classes were 

formed without and with UMAP preprocessing, respectively. We have presented the findings of 
our analysis in Table 1. 

 
Table 1. Impact of UMAP preprocessing on K-means. 

 

Cluster Id Stocks per cluster 

K-means with UMAP preprocessing 

0 22,3% 

1 26,7% 

2 21,9% 

3 14,1% 

4 15,0% 

K-means without UMAP preprocessing 

0 98,9% 

1 1,1% 

 

The results presented in Table 1 indicate that when applied without preprocessing, K-means 

failed to accurately identify the clusters, with only 1% of the data belonging to the second group. 
However, preprocessing with UMAP enabled us to identify the clusters well-distributedly. 

UMAP's nonlinear approach allows faith capture of the underlying geometric structure of the 

data, and the overall topology of the dataset is more accurately preserved even at low dimensions, 

both local and global structures. 
 

Iteratively, we apply the method at each quarter in the dataset to select the optimal number of 

clusters defined by 𝐾 for each of the algorithms, namely K-means, PAM, and AHC. We calculate 

the optimal 𝐾 in each continuous window using the internal validation measures. The algorithm 

generates a score to obtain the cluster number that maximizes the Silhouette Coefficient and 

minimizes the Davies-Bouldin Index. We apply the clustering method with a value of 𝐾 =
{2, . . . ,20} and then average between the values to determine the optimal cluster number. 
 

Figure 2 shows the result of the three clustering methods for the last quarter of 2021 and the 

number of clusters for 𝐾 = 5. 
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Figure 2. Clustering outputs for 𝐾 = 5. 
 

As a result, the method selected a set of 7 stocks from the S&P500 index and one from the IBOV 

index with an average Sharpe Ratio of 5.82 and 𝑂𝑏𝑡 of 0.28, out of a universe of 538 stocks with 

an average Sharpe Ratio of 1.73 and  𝑂𝑏𝑡 of 0.07, the selected stocks are shared among five 

industry classes (according to the classification of business establishments by type of economic 

activity - North American Industry Classification System (NAICS)). 
 

Researchers agree that keeping many different assets in the portfolio is unrealistic for individual 

investors. Many focus on ten or fewer assets, as evidenced in the works of [54] and [10] with five 

assets and [16] with ten assets, given that a very high number of assets are difficult to manage 
and can incur high transaction costs. In recent research, [31] proposed a model to form the 

optimal portfolio in which the classifier showed higher discriminatory power, converging 

positively to a lower cardinality with a daily average of seven assets. These researches reinforce 
the results obtained in our experiments that reached a final basket of 8 stocks, thus significantly 

reducing the problem's computational complexity. In Figure 3, we show the average quarterly 

cardinality of the portfolios. The high dispersion of results is due to the different performance of 
the stocks in each quarter and, consequently, different outputs in the UMAP. 
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Figure 3. The optimal number of clusters per quarter. 

 

Figure 4, through a Minimum Spanning Tree (MST) generated by eliminating the links formed 
between nodes by correlations lower than 0.25, we observed that, reciprocally, its topology 

reinforced the aspect described in the distance matrix and dendrogram. In other words, it forms 

two clusters: one with the closest nodes, namely VRSN and NVDA, and the other with PFE and 

VRTX. The size of the nodes is proportional to the size of the annualized returns, and the green 
color signifies a positive performance in the period, which allows the calculation of the Degree 

Centrality (𝐷𝐶). The asset with the highest 𝐷𝐶 is VRSN (1.0), followed by ANET and NVDA 

(0.71). In parallel, BRAP4 and NLOK have the fewest links in the network and, therefore, the 
lowest $DC$ (0.14 and 0.28, respectively). 

 

 
 

Figure 4. MST of the correlations among the selected assets. 

 
The construction of optimized portfolios applying the classic MV model, the IVP, and HRP 

generate weighted portfolios presented in Table 2. 
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Table 2. Portfolio Optimized. 

 

Stock MV IVP HRP Economic Sector Index 

PFE 44,80% 26,50% 30,00% Manufacturing Industry S&P500 

VRSN 20,40% 20,80% 17,10% Professional, Scientific and 

Technical Services 

S&P500 

NLOK 14,10% 11,40% 12,40% Information S&P500 

VRTX 2,90% 10,40% 11,40% Manufacturing Industry S&P500 

NVR 13,80% 12,00% 11,20% Construction S&P500 

ANET 1,10% 7,50% 7,00% Manufacturing Industry S&P500 

BRAP4 2,30% 5,00% 5,60% Management of Companies and 

Enterprises 

iIbovespa 

NVDA 0,60% 6,40% 5,30% Manufacturing Industry S&P500 

 

Manufacturing Industry was the sector with the largest number of assets in the portfolios, 
occupying the largest in the three optimizations, respectively, MV (49.4%), IVP (50.9%), and 

HRP (53.7%). Thus, for the other sectors with three assets, MV was the method that concentrated 

the weights on them the most (80.5%); IVP concentrated the least (57.8%); and HRP distributed 
the weights of these sectors more equally in the portfolio, totaling 61.3% of the total allocation. 

 

In Table 3, we summarize these analyzed indicators. Among the characteristics obtained from the 

three methods studied, we have that MV concentrated the portfolio weights in four assets at 
93.1% and assigned weights between 0.6% and 2.9% for the other assets in the portfolio, facts 

also expressed by the HHI index (2828), demonstrating a high portfolio concentration. IVP and 

HRP were the methods that most evenly distributed the weights among the assets, showing a 
moderate concentration HHI of 1639 and 1710, respectively. For HRP, the assigned weights 

respected the structure of the set formed between the assets, i.e., assets that share close distances 

𝑑 among themselves had their weights distributed in a less concentrated way than the MV. 

 
Table 3. Portfolio Performances. 

 

 MV IVP HRP 

HHI 2828 1639 1710 

Cumulative Returns 164,80% 228,80% 216,90% 

Annual Volatility 18,70% 22,80% 22,10% 

Sharpe Ratio 1,01 1,14 1,11 

Max Drawdown -29,90% -29,60% -29,90% 

Beta S&P500 0,79 0,91 0,89 

Beta Ibovespa 0,34 0,4 0,39 

 
As noted in the performance indicators, the three portfolios outperformed the S&P500 and 

Ibovespa in terms of accumulated return, once the S&P500 performed with gains of 114.61% and 

Ibovespa 100.03% in the period. In common, the portfolios presented annual volatilities at the 

20% level, with IVP being the portfolio with the highest risk and MV the lowest. Thus, reflecting 
the accumulated returns and volatilities, the IVP portfolio had the best Sharpe ratio (0.99), 

followed by HRP (0.96) and MV (0.84), considering a 3% risk-free. In Figure 5, we also observe 

that higher daily losses in the period occurred on a similar day in the portfolios, closely related to 
the increase in restrictive measures associated with the Covid-19 pandemic on a global scale, thus 

affecting them in drawdowns close to 30%, which took 149 trading days to recover in the MV 

portfolio, 111 days for the IVP and 117 for the HRP. 
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Figure 5. Portfolio Performance and Benchmarks. 

 
To test the stability of the in-sample and out-of-sample optimizations, we performed Monte Carlo 

simulations in which we generated synthetic returns from our empirical covariance matrix using 

the multivariate normal distribution. We constructed 10,000 simulated portfolios whose variances 
we distributed into histograms obtained based on 260 observations (equivalent to one-year 

frequency), both in-sample and out-sample. Table 4 presents the average of the in-sample and 

out-of-sample variance distributions. 
 

Table 4. Average variances of the in-sample and out-of-sample distributions. 
 

 𝝈𝑴𝑽
𝟐  𝝈𝑰𝑽𝑷

𝟐  𝝈𝑯𝑹𝑷
𝟐  

In-sample 3,39% 3,99%  3,91% 

Out-Of-Sample 3,52% 4,04% 3,97% 

 
The simulations show that the in-sample and out-sample distributions of the HRP-optimized 

portfolios were more stable, especially when compared to the variance distributions obtained 

through MV. The good performance of the HRP occurs when we notice that its variance 
distributions are very similar, having an average in-sample of 3.91% and 3.97% out-sample. 

 

In contrast, Figure 6 illustrates that the distributions were more shifted among themselves in MV, 

despite the smaller averages of 3.39% and 3.52% for in-sample and out-sample variances, 
respectively, compared to HRP. We can attribute this greater shift to the larger difference 

between these averages. Therefore, this experiment reinforces the results obtained by [33, 3] 

about the greater stability of HRP in the face of MV (represented by the Critical-Line Algorithm 
in the original experiment) and Classical Risk Parity. 
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Figure 6. Monte Carlo simulations of in-sample and out-sample variances distributions. 

 

6. CONCLUSIONS 
 

In this paper, we introduce an innovative methodology for portfolio optimization, a recurrent 

issue in modern financial research for investment decisions. Our approach combines machine 

learning strategies with modern portfolio theory, providing additional insights to explore a 
dimensional reduction in high-dimensional portfolio optimization. It also uses the HRP model in 

a backtesting framework in each continuous window of the investment horizon via Monte Carlo 

simulation. The results show significant computational complexity reduction with preprocessing 
using UMAP, which allowed finding the clusters with the highest discriminatory power resulting 

in a final portfolio with eight assets. The input data for the optimization models favored the 

results of the computational reduction, and the HRP model stands out with better performance 
and higher Sharpe ratio (0.96) compared to IVP and MV. The portfolios also outperformed S&P 

500 and Ibovespa in cumulative returns, with similar annual volatilities of 20%. Despite the 

impact of the pandemic, the portfolios recovered in 111 to 149 trading days after drawdowns of 

close to 30%. 
 

Moreover, there is significant scope for future research on applying other predictive machine 

learning methods to composite out-sample data, implementing risk-smoothing mechanisms such 
as recurrence plots, refining the model for dynamic allocation, and reducing correlation with the 

market. However, these investigations will require more refined historical stock market data 

unavailable in the current dataset. 

 
Our methodology presents an alternative financial application for portfolio managers, 

contributing to the literature on modern portfolio theory and machine learning theory. However, 

we acknowledge that portfolio selection still lacks a perfectly optimal solution. In this paper, we 
discuss the strengths and weaknesses of several existing machine learning methods, hoping that 

future researchers can develop more efficient or hybrid approaches based on the results of our 

processes. 
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