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Abstract. Homomorphic encryption (HE) permits users to perform computations on encrypted data
without first decrypting it. HE can be used for privacy-preserving outsourced computation and analysis,
allowing data to be encrypted and outsourced to commercial cloud environments for processing while
encrypted or sensitive data. HE enables new services by removing privacy barriers inhibiting data sharing
or increasing the security of existing services. A convolution neural network (CNN) can be homomorphically
evaluated using addition and multiplication by replacing the activation function, such as Rectified Linear
Units (ReLU), with a low polynomial degree. To achieve the same performance as the ReLU activation
function, we study the impact of applying the ensemble techniques to solve the accuracy problem. Our
experimental results empirically show that the ensemble approach can reduce bias, and variance, increasing
accuracy to achieve the same ReLU performance with parallel and sequential techniques. We demonstrate
the effectiveness and robustness of our method using three datasets: MNIST, FMNIST, and CIFAR-10.
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1 Introduction

Homomorphic encryption (HE) is a private artificial intelligence (AI) application that
allows users to perform computations on encrypted data without decryption [16]. The
result of calculations will be encrypted when decrypted. As a result, HE is ideal for working
with sensitive data to privacy-preserving outsourced storage and computation. In other
words, HE allows data to be encrypted and outsourced to commercial cloud environments
for processing, all while encrypted.

Deep learning on the cloud enables designing, developing, and training deep learning
applications faster by leveraging distributed networks and HE and cloud computing,
allowing large datasets to be easily ingested and managed to train algorithms. It will
enable deep learning models to scale efficiently and lower costs. HE scheme adopting bit-
wise encryption performs arbitrary operations with an extensive execution time. To shorten
execution time, a method adopts a HE scheme to encrypt integers or complex numbers. An
HE scheme is usually defined in a finite field, so it only supports two finite field operations,
addition, and multiplication, which can behave entirely differently than floating point
numbers operations used in typical AI applications. Accordingly, functions commonly used
in deep learning, such as ReLU [20], Sigmod, and max-pooling, are not compatible with
HE [28] [34]. To address this issue, the polynomial activation function can evaluate CNN
to address since HE straightforwardly supports additions and multiplications. Due to the
increased complexity in computing circuits with nested multiplications, it is desirable to
restrict the computation to low-degree polynomials [19]. However, replacing ReLU with
a low-degree polynomial, combined with other techniques such as batch normalization
(BN) [35], still suffers from high bias, variance, and low accuracy. Intuitively, the ensemble
is a machine learning approach that consists of a set of individual weak learning models
working in sequential or parallel. The outputs are combined with a decision fusion strategy
to produce a single and better performance than any single model [21]. That motivates us
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to introduce the ensemble approach to enhance accuracy by reducing bias and variance
when an HE scheme. Ensemble learning has been recently known to be an essential
reason for improving the performance of deep learning models because sub-models do
not strongly depend on each other, even though they are trained jointly. Moreover, they
exhibit ensemble-like behavior in that their performance smoothly correlates with the
number of valid paths and enables them to work with the depth of the HE network [36].
The success of ensembles is due to the focus on getting a better-performed new model by
reducing the bias or variance of weak learners by combining several of them to create a
strong learner that achieves better performances. It can be differentiated as bagging will
focus on getting an ensemble model with reduced variance, whereas boosting and stacking
will produce strong models less biased than their components [33]. Generally, ensemble
techniques are considered one of the best approaches to better performance due to lower
error and overfitting than any individual method, leading to better performance in the test
set. If each learner might have a sort of bias, or variance, combining them can reduce this
bias. Generally, we can say ensemble is one of the most approaches to better performance
[40].

In this paper, we propose an ensemble approach to improve the accuracy of HE-based
privacy-preserving data inference with deep neural networks (DNN) for both sequential
and parallel ensembles when replacing the ReLU activation function with polynomials.
We applied customized sequential ensemble techniques that can be applied to different
numbers of CNN models, which will be involved in the multi-class prediction while using
polynomials as activation functions in the hidden layer. We applied the bagging method
for the parallel ensemble technique and studied the ensemble’s impact on bias and variance.
Our results indicate that an ensemble could significantly reduce variance and boost accuracy.
To the best of our knowledge, this is the first work to investigate the ensemble approach
in the context of HE-based privacy-preserving inference with DNN to solve the accuracy
problem caused by replacing the activation function with polynomials. Most of the previous
efforts were focused on choosing a better single polynomial to increase the accuracy.
In contrast, our work focuses on improving the low-accuracy classification model by
combining weak models considering the requirements for encrypted data. Figure 2 illustrates
an ensemble approach to increase the accuracy while using polynomials in the hidden layers
in the convention network.

Fig. 1: An ensemble approach to increase the accuracy while using polynomials in the hidden layers in the
convolution network.

In summary, our contributions to this paper include the following:
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– We have investigated the impact of using the sequential ensemble technique on the
accuracy, and the result indicates significant improvement, reaching the same ReLU
performance while using polynomials.

– We have studied the impact of the parallel ensemble technique, especially bagging, and
our result shows an improvement in the variance result without increasing bias.

– We have demonstrated the effectiveness and robustness of our method using three
datasets; MNIST [26], FMNIST [39], and CIFAR-10 [24].

The rest of the paper is organized as follows: section 2 reviews related works and
summarize the proposed approach’s advantages. section 3 discusses the ensemble learning
on bias and variance. section 4 presents the details of the proposed method, and section 5
demonstrates the effectiveness of the proposed approach with experimental results. Finally,
we conclude the paper in section 6.

2 Related Works

Replacing the ReLU activation function with polynomial: To study the impact
of replacing the ReLU activation function with the polynomial activation function in
neural networks, several works such as [22] and [5] point out the challenging caused
by replacing the ReLU function, and the major challenge is severely decreasing in the
accuracy. In 2018, [1] tested the inference of a convolutional neural network (CNN) using
graphical processing and achieved an accuracy of 99% on the Modified National Institute
of Standards and Technology (MNIST) dataset while achieving low classification accuracy
(77.55%) (CIFAR)-10 dataset. [3] studied a deep network with nine ReLU activation layers.
CIFAR-100 datasets, using an improved ReLU and min-max approximation. However, they
used a very deep network not capable of HE. Additionally, [30] investigated how FHE with
deep learning can be used at scale toward accurate sequence prediction. They reached an
accuracy of 87.6% on average; however, they used confidential data that cannot be made
public. Some work such as [19], [22], and [12], only studied the accessible gray-scale dataset
MNIST because it is easy to classify with high accuracy. Table 1 illustrates the accuracy
of each research in the same dataset that we have used.

Table 1: Accuracy performance in related research using the same dataset and the type of pooling.
Accuracy(%)

Reserech Pooling BN MNIST F MNIST
CIFAR-

10

[19] Average - 98.95

[12] Average Yes 99.30 - -

[22] Scaled mean - 98.10 - -

[1] Average - 99.00 - 77.55

Ensemble techniques: Numerous works studied the impact of the ensemble approach
in solving the problem of bias and variance. They point out that one of the main reasons
behind the success of the ensemble methods is combining multiple ways, such as averaging
and voting, where the ensemble model performs better than any of the individual models.
[13] reviewed ensemble methods and explained why ensembles could often perform better
than any single model. The reasons for the success of ensemble learning include: statistical,
computational, and representation learning. Bias-variance decomposition of the expected
misclassify rate, the most commonly used loss function in supervised learning and frequency-
based estimation of the decomposition terms, is biased and shows how to correct for this
bias and study the decomposition of various algorithms and datasets [23]. [37], investigated
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the different mechanism that allows for trade-offs to the bias-variance decomposition of
the error ensemble methods, such as the random forest and application of post-processing
algorithms. [7] showed heuristically that the variance of the bagged predictor is less than
the original predictor and proposed that bagging is better in higher dimensional data.
[9] explained how bagging gives smooth, slight variance and mean bias error, introducing
sub-bagging and half sub-bagging. A high-bias model is caused by a low degree of the
polynomial will result in underfitting. In contrast, high variance is caused when the model
has many degrees of freedom, like a high-degree polynomial model, and causes overfitting.

3 Ensemble Learning on Bias and Variance

Machine learning aims to build a model that performs well with the training and testing
data. It is crucial to understand prediction errors, bias, and variance, then a trade-off
between a model’s ability to reduce bias and variance [18], [8], [14], [32]. The proper
calculation of these errors would increase the accuracy and avoid the mistake of overfitting
and underfitting, both leading to poor predictions [10], [15].

– Overfitting: A model performs well on the training but does not perform well on
the test set; overfitting occurs if the model shows low bias but high variance. Training
the model with so much data will learn from our dataset’s noise and inaccurate data
entries. As a result, the model does not categorize the data correctly.

– Underfitting: It occurs when the machine learning algorithm cannot capture the
data trend. Intuitively, underfitting happens when the model or algorithm does not
sufficiently fit the data. Specifically, underfitting occurs if the model or algorithm
shows low variance but high bias.

The error consists of the essential three components: Bias and variance, and irreducible
errors are as follow:

Error(x) = Bais2 + V ariance+ IrreducibleError

To build a good model, we must find a balance between bias and variance to optimize the
total error. Since we can’t control Irreducible error, we can handle bias and variance by
minimizing the sum of the bias and variance contributions to the generalization error. The
definition of Bias Error and Variance Error is as follows:

– Bias Error: Bias is the average difference between predicted and actual results. High
bias means we are getting low-performance Under-fitting.

– Variance Error: Quantify the expected value difference in the same way observation
on that time model is over-fitting. It is caused by a very complex model on simple
data. Train a model that shows high variance near 100% accuracy on training data.
However, checking the present data model fails to predict the correct result.

Managing bias and variance is crucial to achieving a well-performing training model
prediction. There will be a trade-off between minimizing the bias and minimizing the
variance as given [18], [8], [14] :

E[o− t]2 = bias2 +
1

M
var + (1− 1

M
)covar

bias =
1

M
var

∑
i

E(oi − t)

var =
1

M
var

∑
i

E[oi − E[OI ]]
2
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covar =
1

M(M − 1)

∑
i

∑
j ̸=i

E[oi − E[Oi]][oj − E[Oj ]]

Where t is each model’s target oi output, and M is the ensemble size. Here, the bias
term measures the average difference between the base learner and the model output, var
indicates their average variance, and covar is the covariance term measuring the pairwise
difference of different bases. According to [11], and [27], there is no single solution to avoid
overfitting. However, we can use techniques to eliminate overfitting, such as increasing the
data size, cross-validation, early stopping, regularization, and ensemble technique.

3.1 Ensemble technique

Neural network models are a nonlinear method that enables it to learn complex nonlinear
relationships in the data. However, it will make the models extremely sensitive to initial
conditions in terms of random weights and the statistical noise in the training dataset.
Accordingly, every time the model is trained, it will learn a different version from the
mapping input and output. As a result, the ensemble can reduce the variance of neural
network models by combining the perdition of multiple models instead of a single model to
ensure that the most stable and best possible prediction is considered. According to [25],
the performance of one model compared to ensemble predictions averaged over two, five,
and seven models are distinct. Averaging the predictions of five similar CNN’s gives an
error rate of 16.4%, whereas averaging the predictions of two pre-trained CNNs with the
same five CNN’s gives an error rate of 15.3%. Indeed, an ensemble improves the quality
of essential algorithms and increases the underlying algorithms’ diversity. Also, it aims to
make it sufficiently diverse, and the correct operation of other algorithms will compensate
for the errors of individual algorithms. The essential idea of ensemble methods is to reduce
the bias-variance of weak learners by combining several of them to create a strong learner
called the ensemble model that achieves better performances. The vulnerable learners
or base models can be used as building blocks for designing more complex models by
combining several. The primary models’ performance is feeble because they are of high
bias due to a low degree of freedom models and high variance to be robustly caused by the
high degree of freedom models [31]. The number of models in the ensemble is essential to
keep small due to computational expense in training models and the diminishing returns
in performance from adding more ensemble members. We can use different approaches,
such as various datasets, models, or combinations.

3.2 Categories of Ensemble Methods

The ensemble strategies are broadly categorized into sequential ensemble and parallel
ensemble techniques:

– Sequential ensemble techniques: Generate base learners in a sequence, creating
a dependency between each base learner. The model’s performance is improved by
assigning higher weights to previously misrepresented learners [29].

– Parallel ensemble technique: The base learners are created in a parallel format
where the methods take advantage of the similar generation of base learners to encourage
independence, significantly reducing the error between the base learners. Most ensemble
techniques apply a single algorithm in base learning, resulting in homogeneity in
all base learners. Other methods involve heterogeneous base learners, giving rise to
heterogeneous ensembles, which means base learners are learners of distinct types. In
contrast, homogeneous base learners are base learners of the same kind with similar
qualities.
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Fig. 2: An ensemble approach to increase the accuracy while using polynomials in the hidden layers in the
convolution network (A)Sequential ensemble technique (B) Parallel ensemble technique

Generally speaking, existing ensemble learning methods can be grouped into three
types:

– Bagging: Homogeneous weak learners independently learn from each other in parallel
and combine them following some deterministic averaging process [6]. The model is
called stable when it is less sensitive to small fluctuations in the training date [2].
Bagging is more useful when the model is unstable, while bagging is not valuable for
improving the performance in stable models.

– Boosting: Homogeneous weak learners sequentially learn in an adaptive way where the
base model depends on the previous model and combines them following a deterministic
strategy [17].

– Stacking: Heterogeneous weak learners, learning in parallel and combining and training
a meta-model and the output prediction based on the different weak models’ predictions
[38].

But other variant methods are also possible based on specific problem needs.

3.3 Advantage and Disadvantages of Ensemble learning

Advantages of Model Ensembles :

– Ensemble methods have higher predictive accuracy compared to the individual models.

– Ensemble methods are beneficial when there is both linear and non-linear type in the
dataset; by combining different models to handle this type of data.

– With ensemble methods, bias and variance, can be reduced, which avoids underfitting
and overfitting issues and makes it less noisy with more stability.

Ensembles are not always better because they cannot help unknown differences between
the sample and the population. Ensembles should be used carefully due to their difficulty
in interpreting. Using the ensemble approach should consider the cost of creating and
computing, increasing the complexity of the classification, deploying the ensemble carefully,
and being hard to implement in a real-time platform. Generally, ensembles provide higher
predictive accuracy by creating lower variance and bias and providing a deeper understanding
of the data. However, selecting the model and the suitable ensemble methods is crucial since
wrongly choosing the technique will lead to lower predictive accuracy than an individual
model.
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4 Proposed method

Our proposed method is to replace the ReLU activation Function that is not capable of HE
in the hidden layers with a polynomial function, then apply the ensemble technique as an
extra step to boost the accuracy of the classification model. We believe the ensemble will
solve the accuracy problem caused by using the polynomial activation function in hidden
layers. We study the accuracy for both parallel and sequential.

4.1 Sequential ensemble techniques

We create an ensemble of multiple CNN models. This ensemble is applied to the multi-
class prediction of the three datasets. First, we define the individual CNN model, which is
trained sequentially. Every individual model gives its prediction, then the final prediction
of the ensemble model will be the most frequent prediction by all the individual CNN
models. Only ReLU functions in the hidden layer are replaced:

σr(x) = max(x, 0)

With the low-degree polynomial activation function:

σpoly(x) = x2 + x

We choose degree-2 polynomials according to [3] it will lead to better performance, and a
higher than degree-2 polynomials would result in overfitting.

Architecture of convolution network:We train on MNIST, FMNIST, and CIFAR-
10 with polynomial activation functions. The structure of the CNN model is as follows:

– Two convolutional layers: first layer with 32 filters of size 3 x 3, second 46 filters of
size 3 x 3.

– Apply after every convolutional layer average pooling and batch normalization.

– After a dropout layer, the network results are parsed from a final fully connected layer
of ten neurons.

4.2 Parallel ensemble techniques

We use a parallel ensemble approach bagging to study the impact of variance and bias
due to the ease of implementation using Python libraries such as scikit-learn and the ease
of combining base learners’ or estimators’ predictions to improve model performance [2].
Implementation Steps of Bagging:

– Step 1: Create multiple subsets from the original dataset with equal tuples, selecting
observations with replacements.

– Step 2: Create a base model on each subset.

– Step 3: Each model is learned in parallel with each training set and independent of
each other.

– Step 4: Averaging the predictions from all the models to calculate the final prediction.

To implement the ensemble, we use python libraries, including scikit-learn, etc. We have
submitted all the codes as supplementary materials.

5 Experiments and Evaluation

5.1 Datasets

We have tested the proposed method on three different datasets. Here, we review the
characteristics of the tested datasets:
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– MNIST [37]: It’s a handwritten digits database including a training set of 60,000
examples and a test set of 10,000 examples containing 28 × 28 grayscale images with
ten classes.

– Fashion-MNIST [38]: It’s a dataset of images consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a 28×28 grayscale image
associated with a label from 10 classes.

– CIFAR10 [39]: This dataset consists of 32 × 32 color images in 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images.

5.2 Result of Sequential ensemble techniques

The Sequential ensemble techniques results are shown in Table 2, illustrating the resulting
impact on accuracy.

The result of sequential ensemble techniques can be summarized as follows:

1. We measure the accuracy using polynomial and ReLU in the hidden layers. It decreases
around 5%, 14%, and 10% in MINST, F-MINST, and CIFAR-10 when ReLU is replaced
with a polynomial activation function.

2. After applying the sequential ensemble approach, the accuracy increased by about 4%,
8%, and 2% in MNIST, F-MNIST, and CIFIAR-10.

3. After five iterations, we successfully increased the accuracy and achieved performance
at the same level as ReLU on average.

4. The reason behind the higher accuracy is due to the implementation of the combination
of models by aggregating the output from each model with the effects that reduce the
model error and maintain the model’s generalization.

5. The sequential generation of base learners promotes the dependencies between the
base learners. The model’s performance is improved by assigning higher weights to
previously misrepresented learners. Due to the sequential generation of the models, the
time complexity is high. The overall delay will be the total time for all the sequential
sub-model classifications.

Table 2 illustrates the resulting impact on accuracy using sequential ensemble techniques.
Figure 3the accuracy of the individual model with ReLU and polynomial activation
function with sequential ensemble techniques where N = number of individual models
and N=1 polynomial without applying ensemble.

Table 2: The accuracy of the individual model with ReLU and polynomial activation function with
sequential ensemble techniques where N= number of individual model and N=1 polynomial without
applying ensemble.

MINST F MINST CIFAR-10
ReLU 99% 89% 83%

Polynomial 94% 75% 73%
Ensemble

Number of individual model
N=2 95% 95% 75%
N=4 96% 86% 77%
N=6 99% 89% 83.2%

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.3, June 2023

140



0 10 20 30 40 50 60 70 80 90 100

ReLU

Polynomial

N=2

N=4

N=6

CIFAR-10 F-MINST2 MINST

Fig. 3: Comparing the accuracy of the individual model with ReLU and polynomial activation function
where N = number of individual models and n=1 polynomial without applying ensemble.

5.3 Result of Parallel ensemble techniques

The parallel ensemble’s primary purpose is to reduce variance without increasing bias
due to model averaging. The parallel ensemble techniques results can be summarized as
follows:

1. We study the impact of parallel bagging ensemble techniques on average expected loss,
bias, and variance.

2. By replacing the ReLU with a polynomial for both three datasets, the values in both
bias and variance increase, which negatively affects the accuracy.

3. We notice a significant improvement in all datasets even after three estimators in the
variance reduction without increasing the bias, which is the expected result to decrease
the error. For instance, in table 3, the variance value drops from 0.175 to 0.076 with a
basis reduction from 1.748 to 1.130.

4. We achieve the same average result as ReLU in variance and bias after 30 estimators
without increasing bias. For instance,4 the variance value is 0.019, almost the same
with or better than ReLU 0.038 for Minst and Fashion-MNIST datasets.

5. We attain slight improvement after 100 estimates resulting in variance and bias. For
instance, in table 4, the improvement is about 0.003, and no further improvement after
that. There is a trade-off between time complexity and accuracy. As described earlier,
our goal is to reduce bias and variance to increase accuracy performance.

6. For CIFAR-10, it takes more time to reach the same result as ReLU about 100
estimators due to the complexity of the data table 5 illustrated the result.

7. The main reason for improving the variance value in bagging is that dividing the data
into different groups makes the data more distinguishable linearly. As a result, bagging
can compensate for the performance gap between ReLU and polynomial activation
functions in neural networks by decreasing the variance without increasing the bias.

8. In parallel ensemble techniques, base learners are generated in a parallel format utilizing
the parallel generation of base learners to encourage independence between the base
learners. The independence of base learners significantly reduces the error due to the
application of averages. In addition, due to the parallelism, execution will solve the
sequential ensemble problem in time computing.

9. The proposed bagging algorithm is experimentally proven to be very effective in improving
classification accuracy. The results suggest that the bagging approach is very stable
regarding feature selection due to the intrinsic power of reducing learning variance.
Practically, the bagging concept creates new models, and the new mean shows a more
actual picture of how those individual samples relate to each other in value. The more
defined boundaries, the better the correlation between models, which reduces variance
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without increasing the bias. However, bagging slows down and grows more intensive as
the number of iterations increases; clustered systems or a large number of processing
cores will solve the problem of fast execution on large test sets.

Table 3, Table 4 and Table 5 illustrate that the bagging ensemble reduces the average
expected bias and variance that accrued by using polynomial and bagging ensemble in
MNIST, F-MNIST, and CIFAR-10.

Table 3: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
Fashion-MNIST.

Average expected loss Average bias Average variance
ReLU 1.617 1.578 0.038

Polynomial 1.700 1.784 0.175

Ensemble
Number of
estimators

N=3 1.106 1.030 0.076
N=10 1.101 0.980 0.029
N=30 0.989 0.970 0.019
N=100 0.983 0.960 0.011

Table 4: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
MNIST.

Average expected loss Average bias Average variance
ReLU 0.922 0.828 0.094

Polynomial 1.300 1.124 0.175

Ensemble
Number of
estimators

N=3 1.106 1.130 0.076
N=10 1.101 0.980 0.029
N=30 0.989 0.970 0.019
N=100 0.981 0.965 0.016

Table 5: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
CIFAR-10.

Average expected loss Average bias Average variance
ReLU 7.483 7.381 0.102

Polynomial 11.441 9.816 1.625
Ensemble
Number of
estimators

N=3 8.687 8.643 0.043
N=10 8.232 8.211 0.041
N=100 7.642 7.575 0.032

Figure 4 , 5, 6 illustrated the average expected loss, bias, and variance for ReLU,
polynomial, and bagging ensemble for MNIST, F-MNIST CIFAR-10. Our goal is not to
outperform the state-of-the-art non-HE results on MNIST, Fashion-MNIST, and CIFAR-
10. We aim to solve the accuracy problem and prove that the ensemble can close the
accuracy gap caused by replacing the ReLU function with polynomial activation and
improve the accuracy significantly to achieve comparable performance as ReLU. Furthermore,
the ensemble can be combined with other approaches, such as batch normalization, which
makes the network more robust against gradient vanishing or exploding [4].
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Fig. 4: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
MNIST.
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Fig. 5: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
F-MINST.
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Fig. 6: The average expected loss, bias, and variance for ReLU, polynomial, and bagging ensemble for
CIFAR-10.

6 Conclusion

In this work, we apply an ensemble approach to solve the problem of decreasing accuracy
when replacing the ReLU with a polynomial activation function in the hidden layers in HE-
based ML. HE scheme cannot support comparison, division, and exponential operations
in a straightforward manner; some functions used in deep learning, such as ReLU, Sigmod,
and max-pooling, are incompatible with HE. Polynomial activation functions are considered
to address this issue because an HE scheme can straightforwardly support polynomial-
based calculations. However, using polynomials as an activation function causes low accuracy.
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We propose to apply the ensemble approach to solve the accuracy problem caused by
replacing ReLU with a low-degree polynomial. Our experiment results show increased
accuracy in three datasets and achieve the same performance as ReLU in parallel and
sequential ensemble techniques. We achieved 99%, 89%, and 83.2% in MNSIS, F-MINST,
and CIFAR-10. Finally, we proved that bagging would lead to a decrease in average bias
without increasing variance.
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18. Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

19. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International conference on machine learning, pages 201–210. PMLR, 2016.

20. Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on
deep neural networks training. In International conference on machine learning, pages 2672–2680.
PMLR, 2019.

21. Faliang Huang, Guoqing Xie, and Ruliang Xiao. Research on ensemble learning. In 2009 International
Conference on Artificial Intelligence and Computational Intelligence, volume 3, pages 249–252, 2009.

22. Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced matrix computation
and application to neural networks. In Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 1209–1222, 2018.

23. Ron Kohavi, David H Wolpert, et al. Bias plus variance decomposition for zero-one loss functions. In
ICML, volume 96, pages 275–83, 1996.

24. Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5), 2014.

144



25. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

26. Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
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