
International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

Dhinaharan Nagamalai (Eds): EMVL, EDUT, SECURA, AIIoT, CSSE -2023

pp. 71-78, 2023. IJCI – 2023 DOI:10.5121/ijci.2023.120507

SLIDING WINDOW SUM ALGORITHMS FOR DEEP

NEURAL NETWORKS

Roman Snytsar

AI & Research, Microsoft, Redmond, USA

ABSTRACT

Sliding window sums are widely used for string indexing, hashing and time series analysis. We have

developed a family of the generic vectorized sliding sum algorithms that provide speedup of O(P/w) for

window size w and number of processors P. For a sum with a commutative operator the speedup is

improved to O(P/log(w)). Even more important, our algorithms exhibit efficient memory access patterns. In

this paper we study the application of sliding sum algorithms to the training and inference of Deep Neural

Networks. We demonstrate how both pooling and convolution primitives could be expressed as sliding

sums and evaluated by the compute kernels with a shared structure. We show that the sliding sum

convolution kernels are more efficient than the commonly used GEMM kernels on CPUs and could even

outperform their GPU counterparts.

KEYWORDS

Convolution, Machine Learning, Parallel, Vector

1. INTRODUCTION

A Deep Neural Network (DNN) is one of the most significant tools in the arsenal of the machine

learning (ML) researcher [9]. DNNs are constructed from multiple layers that transform data

sequentially via operations such as pooling, convolution, and activation. In most successful
DNNs the vast majority of computational resources is consumed performing convolution.

A common approach to implementing convolutional layers is to expand the input into a column

matrix (im2col) and then call a highly tuned General Matrix Multiplication (GEMM) procedure
from the existing linear algebra library such as BLIS [13] or MKL [15]. Since the hardware

optimized GEMM implementations exist for every standard CPU, graphics processing unit

(GPU), or digital signal processor (DSP), the im2col approach has been highly successful in
DNN frameworks such as Caffe [8], ONNX [2] and Torch [5]. The popularity of the im2col

tactics also influence the design of custom hardware marketed as ML accelerators that are in fact

GEMM accelerators.

The major disadvantages of the im2col conversion are the greatly increased memory footprint of

the input matrix and the reduced data locality. For a convolution with a filter size k, the column

matrix is k times larger than the original input. A lot of effort has been put into remediating this
problem. A mainstream approach is converting the input to a low precision floating point or even

integer representation [6]. The quantization techniques reduce the memory footprint and latency

by an order of magnitude and even influence the design of the GEMM accelerators. It is
important to note though that the quantization is not entangled with GEMM and could be equally

successfully applied to the original convolution problem. Yet another research trend is applying

the GEMM routines to the smaller intermediate data structures [1] [14] or even to the original

input data [16].

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120507

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

72

We propose an approach that replaces GEMM with a new kind of computation kernel that
operates on the unmodified input.

2. METHODS

2.1. Prefix Sum

At the foundation of our method is the concept of a prefix sum, and the accompanying reduce and

scan algorithms. A prefix sum is a transformation that takes an operator ⊕, and a sequence of
elements

𝑥0, 𝑥1, … , 𝑥𝑘 , …

and returns the sequence

𝑦𝑖 = ∑ 𝑥𝑗

𝑖

𝑗=0

= 𝑥0 ⊕ 𝑥1 ⊕ … ⊕ 𝑥𝑖 (1)

or in recurrent form

𝑦𝑖+1 = 𝑦𝑖 ⊕ 𝑥𝑖+1 (2)

Despite the data carry dependency, the Nth element of the prefix sum with an associative

operator could be computed in O(log(N)) parallel steps using the reduce algorithm. An even
stronger statement is that all N elements of the prefix sum could be computed in the same

O(log(N)) parallel steps using the scan algorithm, as shown by [3].

2.2. Sliding Window Sum

The sliding window sum (sliding sum) takes a window size w, an operator ⊕, and a sequence of
elements, and returns the sequence

𝑦𝑖 = ∑ 𝑥𝑗

𝑖+𝑤−1

𝑗=𝑖

= 𝑥𝑖 ⊕ 𝑥𝑖+1 ⊕ … ⊕ 𝑥𝑖+𝑤−1 (3)

where each sum is defined in terms of the operator ⊕ and contains exactly w addends. The
asymptotic complexity of a naive sliding sum algorithm is O(wN) where N is the length of the

source sequence.

Every sum defined by Equation 3 is a prefix sum with operator ⊕ and input sequence xi

...⊕xi+w−1. Many useful operators are associative, so the prefix scan algorithm is applicable here,

reducing complexity of every sum in Equation 3 to O(log(w)) and, trivially, the overall sliding

sum complexity to O(Nlog(w)) parallel steps.

While working on the bioinformatics applications, we have used sliding window sums to

represent the minimizer seeds and have developed a family of algorithms to achieve better
parallel speedups [11]. Now we will apply the same approach to the DNN operators.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

73

2.3. Pooling

The average pooling operator is trivially the sliding window sum with the associative operator +.

By analogy, the max pooling operator is a sliding window sum with the associative operator max.
Implementing the sliding pooling operator could be a warm-up before concentrating on the

convolution.

2.4. Dot Product

As a corollary we will show that a dot product is a prefix sum. The dot product of the two vectors
of length M is defined as:

𝑐 = ∑ 𝑎𝑖

𝑀−1

𝑖=0

𝑏𝑖 (4)

First, we replace vectors a and b with vectors α and β so that

α𝑖 = {
1 𝑖𝑓 𝑎𝑖 = 0
𝑎𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝛽𝑖 = {
0 𝑖𝑓 𝑎𝑖 = 0
𝑏𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

It holds that

∑ α𝑖β𝑖

𝑀−1

𝑖=0

= ∑ 𝑎𝑖𝑏𝑖

𝑀−1

𝑖=0

(6)

Next, we define a sequence of (M + 1) pairs,

γ𝑖 = (
𝑢𝑖

𝑣𝑖
) , 𝑤ℎ𝑒𝑟𝑒 𝑢𝑖 = {

1 𝑖 = 0
α𝑖−1

α𝑖
 0 < 𝑖 < 𝑀

α𝑀−1 𝑖 = 𝑀

, 𝑎𝑛𝑑 𝑣𝑖 = {
β𝑖 𝑖 < 𝑀
0 𝑖 = 𝑀

(7)

and the operator ⊕ such that

γ𝑖 ⊕ γ𝑗 = (
𝑢𝑖

𝑣𝑖
) ⊕ (

𝑢𝑗

𝑣𝑗
) = (

𝑢𝑖 ∙ 𝑢𝑗

𝑢𝑗 ∙ 𝑣𝑖 + 𝑣𝑗
) (8)

Operator ⊕ is associative [3], and the sequence

δ𝑖 = {
𝛾0 𝑖 = 0
𝛿𝑖−1 ⊕ 𝛾𝑖 0 < 𝑖 ≤ 𝑀

(9)

is a prefix sum. The bottom element of the last sum δM is the original dot product, and δM could
be evaluated using the reduce algorithm in log(M) parallel steps of fused multiply-add (FMA)

operations. The total work is still M. The important result here is representing the dot product as a

prefix sum in preparations for the sliding window implementation of the convolution.

2.5. Convolution

Convolution is a sliding window sum (dot product) with the associative operator defined by

equation 8. Consequently, our family of sliding window algorithms is applicable to the

convolution operator.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

74

3. ALGORITHMS

Our first algorithm is a vector-friendly way of calculating the sliding sum assuming the input

sequence elements become available one by one and are processed using the vector instructions

of width P > w:

Vector Y is initialized to the suffix sums with the number of elements decreasing from w−1 to 0.
Then in a loop every incoming element xk is broadcast to the first w elements of vector X. After

vector addition the zeroth element of Y contains the next sliding sum. Next, the vector Y is shifted

left by one element, as denoted by operator ≪, and the state is ready for the next iteration.
Asymptotic complexity of the scalar input algorithm is O(N) with no additional requirements on

the operator ⊕.

This result could be improved if we assume that the input sequence arrives packed in vectors of

width P > w.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

75

At every iteration, P input elements are placed into vector X. X1 is filled with the prefix sums of
up to w addends, and Y1 is filled with the suffix sums constructed from the elements of X. Then

the vector sum of Y and X1 yields the next P output elements. Finally, the suffix sums from Y1

are shifted into proper positions in vector Y, and it is ready for the next iteration.

The asymptotic complexity thus is O(N · w/P) with the parallel speedup O(P/w) for any operator

⊕. If ⊕ is associative, the prefix/suffix sums could be computed in parallel using the algorithm
in [3], and the complexity is reduced to O(N · log(w)/P) with the speedup improving to

O(P/log(w)).

For example, since min is an associative operator, the sliding window minimum can be computed

using the faster version of the vector input algorithm.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

76

One might notice that the suffix sum computation utilizes only w − 1 out of p elements of vector
Y1. Eliminating this inefficiency leads to the Ping Pong algorithm where both suffix and prefix

sums yield some elements of the output sequence.

The Ping Pong algorithm does not offer any asymptotic improvements but is 30-50% faster in
practice. However, it accesses memory in strides unaligned to P, and the two memory loads per

iteration present a challenge while implementing boundary conditions like padding, mirroring, or

periodicity.

A simpler algorithm could be formulated in terms of the Slide operation that extracts a vector

from the concatenation of the two inputs. It directly maps to the EXT instruction from the ARM
SVE instruction set [12], and is easily implemented via the appropriately named vslideup/down

instructions of the RISC-V vector extension [10], or the vperm*2ps Intel AVX512 instructions

[7]. Similar to the previous algorithms, if ⊕ is associative, the inner loop could be replaced by

the parallel reduction algorithm for maximum parallel speedup.

Figure 1. Speedup of the 1-D Convolution.

4. EXPERIMENTS

We have implemented the sliding window convolution as an alternate execution path in the

ONNX framework [2]. Figure 1 shows the achieved speedup when compared to the baseline

MlasConv procedure applied to the large 1-D input and the filters of various sizes. The speedup is
approximately proportional to the logarithm of the kernel size.

Additionally, we have recreated the scenario for the very large dilated kernel described in [4]. We
have achieved up to 6.8x speedup on the small data set and around 4x speedup across the board

approaching the GPU performance numbers.

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

77

Figure 2. Dilated Convolution Speedup

5. CONCLUSION

We have demonstrated the excellent performance of Sliding Sum algorithms using commodity
hardware without the need for specialized accelerators. Despite the promising results, there is

plenty of work ahead.

The most obvious next step is extending the sliding convolution approach to more than one

dimension covering the majority of DNN applications. The most common filter sizes in DNN

applications are 3 and 5 in every dimension. With a filter this small the current sliding
convolution algorithms demonstrate very modest speedup since the number of the arithmetic

instructions per memory load is low. The situation improves in the multiple dimensions but still

could require custom compute kernels for small filter sizes.

Lastly, since the accelerators for matrix multiplication are already present in the current

generation of hardware, it would be wise re-using them. Thus, it is important to re-formulate our

algorithms in terms of the small matrix multiplication completing the circle.

REFERENCES

[1] Anderson, A., Vasudevan, A., Keane, C., Gregg, D.: Low-memory gemm-based convolution

algorithms for deep neural networks. arXiv preprint arXiv:1709.03395 (2017)

[2] Bai, J., Lu, F., Zhang, K.: Onnx: Open neural network exchange (May 2023), ONNX: Open Neural

Network Exchange

[3] Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algorithms. Morgan

Kaufmann (1993)

[4] Chaudhary, N., Misra, S., Kalamkar, D., Heinecke, A., Georganas, E., Ziv, B., Adelman, M., Kaul,

B.: Efficient and generic 1d dilated convolution layer for deep learning. arXiv preprint

arXiv:2104.08002 (2021)

International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023

78

[5] Collobert, R., Bengio, S., Mari´ethoz, J.: Torch: a modular machine learning software library. Tech.

rep., Idiap (2002)

[6] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A survey of quantization

methods for efficient neural network inference. arXiv preprint arXiv:2103.13630 (2021)

[7] Intel 64 and ia-32 architectures software developer manuals (May 2023),
https://www.intel.com/content/www/us/en/developer/articles/technical/intelsdm.html

[8] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.:

Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM

international conference on Multimedia. pp. 675–678 (2014)

[9] Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis,

applications, and prospects. IEEE transactions on neural networks and learning systems (2021)

[10] Riscv-v-spec (May 2023), https://github.com/riscv/riscv-v-spec

[11] Snytsar, R., Turakhia, Y.: Parallel approach to sliding window sums. In: Algorithms and

Architectures for Parallel Processing: 19th International Conference, ICA3PP 2019, Melbourne, VIC,

Australia, December 9–11, 2019, Proceedings, Part II. pp. 19–26. Springer (2020)

[12] Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell, M., Magklis, G.,

Martinez, A., Premillieu, N., et al.: The arm scalable vector extension. IEEE micro 37(2), 26–39
(2017)

[13] Van Zee, F.G., Van De Geijn, R.A.: Blis: A framework for rapidly instantiating blas functionality.

ACM Transactions on Mathematical Software (TOMS) 41(3), 1–33 (2015)

[14] Vasudevan, A., Anderson, A., Gregg, D.: Parallel multi channel convolution using general matrix

multiplication. In: 2017 IEEE 28th international conference on application-specific systems,

architectures and processors (ASAP). pp. 19–24. IEEE (2017)

[15] Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., Wang, Y., Wang, E., Zhang, Q., Shen, B.,

et al.: Intel math kernel library. High-Performance Computing on the Intel® Xeon Phi™: How to

Fully Exploit MIC Architectures pp. 167–188 (2014)

[16] Wang, H., Ma, C.: An optimization of im2col, an important method of cnns, based on continuous

address access. In: 2021 IEEE International Conference on Consumer Electronics and Computer
Engineering (ICCECE). pp. 314–320. IEEE (2021)

AUTHORS

Roman Snytsar is a Principal member of Microsoft Research, working on software

optimization and energy efficiency problems.

	Abstract
	Keywords
	Convolution, Machine Learning, Parallel, Vector

