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ABSTRACT 
 
Sliding window sums are widely used for string indexing, hashing and time series analysis. We have 

developed a family of the generic vectorized sliding sum algorithms that provide speedup of O(P/w) for 

window size w and number of processors P. For a sum with a commutative operator the speedup is 

improved to O(P/log(w)). Even more important, our algorithms exhibit efficient memory access patterns. In 

this paper we study the application of sliding sum algorithms to the training and inference of Deep Neural 

Networks. We demonstrate how both pooling and convolution primitives could be expressed as sliding 

sums and evaluated by the compute kernels with a shared structure. We show that the sliding sum 

convolution kernels are more efficient than the commonly used GEMM kernels on CPUs and could even 

outperform their GPU counterparts. 
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1. INTRODUCTION 
 
A Deep Neural Network (DNN) is one of the most significant tools in the arsenal of the machine 

learning (ML) researcher [9]. DNNs are constructed from multiple layers that transform data 

sequentially via operations such as pooling, convolution, and activation. In most successful 
DNNs the vast majority of computational resources is consumed performing convolution. 

 

A common approach to implementing convolutional layers is to expand the input into a column 

matrix (im2col) and then call a highly tuned General Matrix Multiplication (GEMM) procedure 
from the existing linear algebra library such as BLIS [13] or MKL [15]. Since the hardware 

optimized GEMM implementations exist for every standard CPU, graphics processing unit 

(GPU), or digital signal processor (DSP), the im2col approach has been highly successful in 
DNN frameworks such as Caffe [8], ONNX [2] and Torch [5]. The popularity of the im2col 

tactics also influence the design of custom hardware marketed as ML accelerators that are in fact 

GEMM accelerators. 

 
The major disadvantages of the im2col conversion are the greatly increased memory footprint of 

the input matrix and the reduced data locality. For a convolution with a filter size k, the column 

matrix is k times larger than the original input. A lot of effort has been put into remediating this 
problem. A mainstream approach is converting the input to a low precision floating point or even 

integer representation [6]. The quantization techniques reduce the memory footprint and latency 

by an order of magnitude and even influence the design of the GEMM accelerators. It is 
important to note though that the quantization is not entangled with GEMM and could be equally 

successfully applied to the original convolution problem. Yet another research trend is applying 

the GEMM routines to the smaller intermediate data structures [1] [14] or even to the original 

input data [16]. 

https://airccse.org/journal/ijci/Current2023.html
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We propose an approach that replaces GEMM with a new kind of computation kernel that 
operates on the unmodified input. 

 

2. METHODS 
 

2.1. Prefix Sum 
 

At the foundation of our method is the concept of a prefix sum, and the accompanying reduce and 

scan algorithms. A prefix sum is a transformation that takes an operator ⊕, and a sequence of 
elements 

 

𝑥0, 𝑥1, … , 𝑥𝑘 , … 
 

and returns the sequence 

 

𝑦𝑖 = ∑ 𝑥𝑗

𝑖

𝑗=0

= 𝑥0 ⊕ 𝑥1 ⊕ … ⊕ 𝑥𝑖 (1) 

 

or in recurrent form 

 

𝑦𝑖+1 = 𝑦𝑖 ⊕ 𝑥𝑖+1 (2) 
 

Despite the data carry dependency, the Nth element of the prefix sum with an associative 

operator could be computed in O(log(N)) parallel steps using the reduce algorithm. An even 
stronger statement is that all N elements of the prefix sum could be computed in the same 

O(log(N)) parallel steps using the scan algorithm, as shown by [3]. 

 

2.2. Sliding Window Sum 
 

The sliding window sum (sliding sum) takes a window size w, an operator ⊕, and a sequence of 
elements, and returns the sequence 

 

𝑦𝑖 = ∑ 𝑥𝑗

𝑖+𝑤−1

𝑗=𝑖

= 𝑥𝑖 ⊕ 𝑥𝑖+1 ⊕ … ⊕ 𝑥𝑖+𝑤−1 (3) 

 

where each sum is defined in terms of the operator ⊕ and contains exactly w addends. The 
asymptotic complexity of a naive sliding sum algorithm is O(wN) where N is the length of the 

source sequence. 

 

Every sum defined by Equation 3 is a prefix sum with operator ⊕ and input sequence xi 

...⊕xi+w−1. Many useful operators are associative, so the prefix scan algorithm is applicable here, 

reducing complexity of every sum in Equation 3 to O(log(w)) and, trivially, the overall sliding 

sum complexity to O(Nlog(w)) parallel steps. 
 

While working on the bioinformatics applications, we have used sliding window sums to 

represent the minimizer seeds and have developed a family of algorithms to achieve better 
parallel speedups [11]. Now we will apply the same approach to the DNN operators. 
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2.3. Pooling 
 

The average pooling operator is trivially the sliding window sum with the associative operator +. 

By analogy, the max pooling operator is a sliding window sum with the associative operator max. 
Implementing the sliding pooling operator could be a warm-up before concentrating on the 

convolution. 

 

2.4. Dot Product 
 

As a corollary we will show that a dot product is a prefix sum. The dot product of the two vectors 
of length M is defined as: 

𝑐 = ∑ 𝑎𝑖

𝑀−1

𝑖=0

𝑏𝑖 (4) 

 
First, we replace vectors a and b with vectors α and β so that 

α𝑖 = {
1       𝑖𝑓 𝑎𝑖 = 0
𝑎𝑖   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

, 𝛽𝑖 = {
0     𝑖𝑓 𝑎𝑖 = 0 
𝑏𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5) 

 

It holds that 

∑ α𝑖β𝑖

𝑀−1

𝑖=0

= ∑ 𝑎𝑖𝑏𝑖

𝑀−1

𝑖=0

(6) 

 

Next, we define a sequence of (M + 1) pairs, 

γ𝑖 = (
𝑢𝑖

𝑣𝑖
) ,  𝑤ℎ𝑒𝑟𝑒 𝑢𝑖 = {

1                    𝑖 = 0 
α𝑖−1

α𝑖
       0 < 𝑖 < 𝑀

α𝑀−1                 𝑖 = 𝑀

,        𝑎𝑛𝑑  𝑣𝑖 = {
β𝑖         𝑖 < 𝑀
0         𝑖 = 𝑀

(7) 

 

and the operator ⊕ such that 

γ𝑖 ⊕ γ𝑗 = (
𝑢𝑖

𝑣𝑖
) ⊕ (

𝑢𝑗

𝑣𝑗
) = (

𝑢𝑖 ∙ 𝑢𝑗

𝑢𝑗 ∙ 𝑣𝑖 + 𝑣𝑗
) (8) 

 

Operator ⊕ is associative [3], and the sequence 

δ𝑖 = {
𝛾0                           𝑖 = 0
𝛿𝑖−1 ⊕ 𝛾𝑖     0 < 𝑖 ≤ 𝑀

(9) 

 

is a prefix sum. The bottom element of the last sum δM is the original dot product, and δM could 
be evaluated using the reduce algorithm in log(M) parallel steps of fused multiply-add (FMA) 

operations. The total work is still M. The important result here is representing the dot product as a 

prefix sum in preparations for the sliding window implementation of the convolution. 

 

2.5. Convolution 
 
Convolution is a sliding window sum (dot product) with the associative operator defined by 

equation 8. Consequently, our family of sliding window algorithms is applicable to the 

convolution operator. 
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3. ALGORITHMS 
 
Our first algorithm is a vector-friendly way of calculating the sliding sum assuming the input 

sequence elements become available one by one and are processed using the vector instructions 

of width P > w: 

 

 
 

Vector Y is initialized to the suffix sums with the number of elements decreasing from w−1 to 0. 
Then in a loop every incoming element xk is broadcast to the first w elements of vector X. After 

vector addition the zeroth element of Y contains the next sliding sum. Next, the vector Y is shifted 

left by one element, as denoted by operator ≪, and the state is ready for the next iteration. 
Asymptotic complexity of the scalar input algorithm is O(N) with no additional requirements on 

the operator ⊕. 

 
This result could be improved if we assume that the input sequence arrives packed in vectors of 

width P > w. 
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At every iteration, P input elements are placed into vector X. X1 is filled with the prefix sums of 
up to w addends, and Y1 is filled with the suffix sums constructed from the elements of X. Then 

the vector sum of Y and X1 yields the next P output elements. Finally, the suffix sums from Y1 

are shifted into proper positions in vector Y, and it is ready for the next iteration. 

 

 
 

The asymptotic complexity thus is O(N · w/P) with the parallel speedup O(P/w) for any operator 

⊕. If ⊕ is associative, the prefix/suffix sums could be computed in parallel using the algorithm 
in [3], and the complexity is reduced to O(N · log(w)/P) with the speedup improving to 

O(P/log(w)). 

 
For example, since min is an associative operator, the sliding window minimum can be computed 

using the faster version of the vector input algorithm. 
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One might notice that the suffix sum computation utilizes only w − 1 out of p elements of vector 
Y1. Eliminating this inefficiency leads to the Ping Pong algorithm where both suffix and prefix 

sums yield some elements of the output sequence. 

 

The Ping Pong algorithm does not offer any asymptotic improvements but is 30-50% faster in 
practice. However, it accesses memory in strides unaligned to P, and the two memory loads per 

iteration present a challenge while implementing boundary conditions like padding, mirroring, or 

periodicity. 
 

A simpler algorithm could be formulated in terms of the Slide operation that extracts a vector 

from the concatenation of the two inputs. It directly maps to the EXT instruction from the ARM 
SVE instruction set [12], and is easily implemented via the appropriately named vslideup/down 

instructions of the RISC-V vector extension [10], or the vperm*2ps Intel AVX512 instructions 

[7]. Similar to the previous algorithms, if ⊕ is associative, the inner loop could be replaced by 

the parallel reduction algorithm for maximum parallel speedup. 
 

 
Figure 1. Speedup of the 1-D Convolution. 

 

4. EXPERIMENTS 
 

We have implemented the sliding window convolution as an alternate execution path in the 

ONNX framework [2]. Figure 1 shows the achieved speedup when compared to the baseline 

MlasConv procedure applied to the large 1-D input and the filters of various sizes. The speedup is 
approximately proportional to the logarithm of the kernel size. 

 

Additionally, we have recreated the scenario for the very large dilated kernel described in [4]. We 
have achieved up to 6.8x speedup on the small data set and around 4x speedup across the board 

approaching the GPU performance numbers. 



International Journal on Cybernetics & Informatics (IJCI) Vol. 12, No.5, October 2023 

77 

 
Figure 2. Dilated Convolution Speedup 

 

5. CONCLUSION 
 

We have demonstrated the excellent performance of Sliding Sum algorithms using commodity 
hardware without the need for specialized accelerators. Despite the promising results, there is 

plenty of work ahead. 

 
The most obvious next step is extending the sliding convolution approach to more than one 

dimension covering the majority of DNN applications. The most common filter sizes in DNN 

applications are 3 and 5 in every dimension. With a filter this small the current sliding 
convolution algorithms demonstrate very modest speedup since the number of the arithmetic 

instructions per memory load is low. The situation improves in the multiple dimensions but still 

could require custom compute kernels for small filter sizes. 

 
Lastly, since the accelerators for matrix multiplication are already present in the current 

generation of hardware, it would be wise re-using them. Thus, it is important to re-formulate our 

algorithms in terms of the small matrix multiplication completing the circle. 
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