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ABSTRACT 
 
The role of deep learning in the recognition of morphological structures in histopathological data has 

progressed significantly. But, less intensive preprocessing stages and their contribution to deep learning 

pipelines is often overlooked. Color normalization (CN) algorithms are among the most prominent methods 

in this stage, and they work by standardizing the staining pattern of a dataset. However, the impact of 

various color normalization algorithms on the detection of glomeruli functional tissue units (FTUs) in 

kidney tissue data has not been explored before. An advanced deep learning architecture was built with the 

U-NET segmentation model. The U-NET model is an architecture that specializes in the segmentation of 

biomedical data. A dataset of 15 kidney whole slide images (WSIs), each annotated with locations of 
glomeruli FTUs were processed and subsequently normalized according to three 3 different conventional 

color normalization techniques (Reinhard, Vahadane, Macenko), and fed into a U-NET model. The dice 

score coefficient (DSC) was used to compare the results of each run. It was determined that color 

normalization algorithms significantly impact the segmentation results of deep learning algorithms, with 

the Reinhard algorithm being the best technique. The implications of this work are immense, as it could 

contribute to the proliferation of color normalization techniques in preprocessing deep learning workflows, 

which could improve general segmentation accuracies.  
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1. INTRODUCTION 
 

1.1. Overview  
 

The application of deep learning within the context of medical imaging has allowed for faster and 

more accurate analysis compared to conventional methods of analysis that rely on a pathologist. 
The advantages that deep learning provides in this context can be highlighted when dealing with 

organ tissues that exhibit great heterogeneity, such as the kidney. The great diversity of tissue 

within the kidney makes it especially difficult for pathologists to annotate, consequently making 
deep learning techniques focused on the annotation of kidney tissue more valuable and significant 

[1]. Thus, exploring ways to make deep learning models trained on histopathological kidney 

tissue data more accurate and useable within a clinical setting is imperative. By being able to 

effectively evaluate particular techniques that could contribute to the enhancement of deep 
learning model performance and applicability when applied to kidney tissue data, similar strides 

could be taken with other kinds of tissue data. The widespread application of deep learning in 

pathological contexts, and thus for the diagnosis and prognosis of multi-organ diseases, could 
revolutionize the medical sphere [2]. 

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120509
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Figure 1. Histopathological Image Segmentation Workflow 

 

The purpose of this research is to evaluate the impact of various, conventionalized color 
normalization techniques on a self-engineered U-NET deep learning model focused on analyzing 

kidney tissue data. This would allow for the changes in model performance according to color 

normalization technique to be quantified, and could allow for the greater application of particular 
color normalization techniques in more contexts. This could also effectively improve model 

performance and make strides in achieving clinical integration.  

 

 
 

Figure 2. Color Normalization Workflow – Pattern of reference image applied to diverse source dataset for 
normalized generated dataset 

  

1.2. Literature Review  
 

Previously developed deep learning models trained to identify glomerular functional tissue units 

have often emphasized the performance of the U-NET model for its high accuracy [3, 4]. The U-
NET model was proposed in 2015, and is a deep learning model especially compatible with 

biomedical imaging due to its unique architecture [5]. Proposed improvements in previously 

referenced works are the inclusion of a preprocessing technique that normalized stains in the 
datasets [3]. Further work involves the development of a computer-aided diagnostic (CAD) 

model that is capable of not only segmenting, but also classifying glomeruli [6]. Although these 

works demonstrate a variation in methodology in terms of the model leveraged (an ANN rather 
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than the more commonly used CNN), an emphasis on the experimentation of various 
preprocessing techniques, namely color normalization, is generally absent. Previous work that 

has focused on the application of various color normalization algorithms and their impact on deep 

learning models trained on different kinds of histopathological data [6] allows for the techniques 

that are potentially effective with kidney tissue data to be narrowed down, despite this work not 
experimenting with this type of tissue in particular. Other work that focused on gauging the 

impact of color normalization techniques on other kinds of biomedical data have found that it 

successfully tamed variability in data [7]. 
 

The lack of research surrounding the application and evaluation of color normalization 

techniques on kidney histopathological images is a clear research gap. This project aims to 
address this gap by testing 3 color normalization techniques that are most commonly used in 

order to determine the impact of color normalization on deep learning model performance, 

potentially allowing for heightened model performance and greater clinical applicability. This 

project hypothesizes that every single normalization technique will aid in a model that improves 
upon the performance of a deep learning model trained solely on the original, unnormalized data. 

Furthermore, of the 3 color normalization algorithms being tested – Vahadane, Reinhard, and 

Macenko – it is hypothesized that the Reinhard algorithm will perform the best due to its frequent 
use in literature.  

 

1.3. U-NET Model Overview  
 

The U-NET model is able to generally provide better segmentation accuracies when applied to 

histopathological data due to its particular architecture, as seen in Figure 6. The first half of its U-
shape is known as the contracting path, which primarily consists of convolutional and max 

pooling layers. These layers are used to extract features, and to reduce the dimensionality of 

feature maps. The use of these layers allowing for complex and high-level features to be 
captured. The second half of the model is composed of the expanding path. This path creates the 

segmentation map and leverages transposed convolution (or Up-convolution) to increase the 

resolution of the feature maps. Essentially, this path transforms the compressed representation 

from the contracting path to a segmentation map in the original resolution. One of the most 
unique aspects of the U-NET architecture are the skip connection layers (lines connecting the 

contracting path to the expanding path). These connections allow for the preservation of very 

specific spatial information. This is especially beneficial when applied to extremely complex and 
detailed data like that of histopathological data. Consequently, when applied to this kind of data, 

more accurate and precise segmentations can be achieved.  

 

2. METHEDOLOGY 
 
Kidney tissue data is derived from the “HuBMAP: Hacking the Kidney Dataset”. This dataset 

presents 20 total Formalin Fixed Paraffin Embedded (FFPE) Periodic Acid-Schiff (PAS)-stained 

kidney whole slide images (WSIs). The data is pre-annotated with the locations of Glomeruli 
Functional Tissue Units (FTUs). From each image, individual tiles of resolution 512 x 512 are 

obtained; this processing stage results in roughly 2600 images. In order to proliferate the data, 

augmentative procedures are used: random cropping, random mirroring, random jittering, and 

random noise. Examples of these augmentation on data is demonstrated in Figure 4. These 
augmentative procedures create transformation within the data so as to create more variations and 

to expand the size of the dataset. Furthermore, augmentations contribute to a more generalized 

and accurate deep learning model. This proliferated dataset is then portioned for training/testing 
purposes with a 90/10 ratio (90% of the dataset is allocated for training, while the other 10% is 

set aside for testing). 
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Figure 3. Example of Kidney Data - Tile (left) and Annotated Tile (right) 

 

 
 

Figure 4. Augmentative Functions - Left: Original Image; Right: Augmented Image 

 

 A commonly selected reference image is chosen based upon the effectiveness of the reference 
image established by successful teams who had previously worked with the dataset. The original 

dataset is normalized based upon a singular reference image by each of the three-color 

normalization algorithms. In total, there are 4 datasets (the original, and 3 normalized). An array 
of color metrics is applied to each dataset to gauge the impact of color normalization on the 

quality of the dataset. Subsequently, each dataset is fed into a U-NET deep learning model 

trained to recognize glomeruli FTUs. The dice score coefficient (DSC) is used to evaluate the 

performance of the model for each dataset, effectively comparing the impact of color 
normalization on model accuracy. These results leverage 10-fold cross validation to ensure 

statistical significance.  

 

 
 

Figure 5. Applying Reference Pattern to Source Dataset – A generated dataset more aligned in color is 

generated by applying the pattern of the reference image to the original dataset 
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2.1. Color Normalization  
 

Color Normalization (CN) algorithms were specifically chosen for experimentation due to their 

prior success in other tissue-based segmentation algorithms [8]. The successful use of the 
Reinhard, Vahadane, and Macenko CN algorithms for medical segmentation tasks may be 

potentially translated to glomeruli detection algorithms.  

 
Reinhard et al developed a globalized technique for color normalization, in which the source 

image receives the mean color values of the target, or reference image. This results in a generated 

image that is very similar to that of the reference [9].  

 
Macenko and Vahadane developed color normalization techniques that leveraged stain 

separation. These separated stain maps are normalized and combined in a fashion that relies on 

the stain color of the reference image [10]. 
 

2.2. Architecture  
 
A constant architecture must be used because with this constant, an accurate measure of the 

impact of CN algorithms would not be available. Furthermore, studies that test various data 

augmentations keep their models constant as changing the models can impact the overall 
accuracy, interfering with the comparison of different preprocessing algorithms and creating 

distorted comparisons. For example, previous works that evaluate the strength of color 

normalization methods have kept particular model architectures as constants in their experiments 
[20]. In this particular project, the U-NET model architecture is specifically used is due to the 

prevalence of its usage in various medical segmentation purposes [11]. The architecture is 

specialized to work with medical data that is meant to be segmented, and operates in a fast and 

precise manner [12]. In the context of identifying glomeruli specifically, recent literature has 
widely used the U-NET algorithm [13]. Therefore, using U-NET as a constant architecture 

ensures a good baseline performance while practically measuring any added benefit of a added 

CN algorithm.  
 

 
 

Figure 6. U-NET Deep Learning Model Architecture – Retrieved from [14] 
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The particular U-NET model architecture relies on the Dice Score Loss function, which 
quantifies the difference in segmentation between a model’s predicted segmentation and the 

ground truth. Furthermore, the Adam optimizer is leveraged at learning rate 1e-4 in order to 

adjust the weights of the deep learning model so as to achieve a set of weights capable of optimal 

model performance. Furthermore, the model is trained on 100 epochs with a batch size of 8. This 
means that the model goes through the entirety of the training data 100 times, and is updated 

whenever it processed 8 images.  

 
To reiterate, the novelty of this work is derived from the direct comparison of model performance 

when trained on datasets processed with various color normalization techniques (Reinhard, 

Vahadane, & Macenko). In the particular context of segmenting Glomeruli FTUs in kidney 
images, there is a lack of this work. Demonstrating the effectiveness of these processing 

techniques with morphologically complex data may contribute to its implementation in wider 

scales, and result in residual benefits such as mitigating bias in deep learning models (bias 

accumulates from heavy diversity in stains).  
 

2.3. Performance Metrics 
 

Once the deep learning model is developed, performance metrics need to be compared to 

determine whether models with CN preprocessing stages present any added benefits. The usage 

of performance metrics has long characterized the effectiveness of machine learning algorithms 
[15]. Therefore, using the correct performance metrics is vital. For segmentation, prevalent 

performance metrics include the Dice Score Coefficient (DSC), IoU (Intersection-over-Union), 

and accuracy. Previous works have used the DSC and IoU metrics to directly compare and 
evaluate various models trained of kidney-based glomerular data [16]. Consequently, the use of 

these metrics as a ground for comparison among a variety of models suggests that it is a reputable 

method for the accurate reflection of model performance. For this research, the DSC was adopted 
as a means to quantify model performance.  

 

 
 

Equation  1. Dice Coefficient 

 

The DSC value measures the intersection between two areas. It is 2 * (area of intersection) / total 
number of pixels in two areas. The greater this value, the more indicative of a model’s strength, 

as the predicted segmentation is closer to the ground truth (real) segmentation.   

 

The use of PAS-stained data to feed into U-NET algorithms is commonplace in this field. 
Therefore, comparing this workflow to one that uses a color normalization algorithm will provide 

valuable insight into the latter’s impact on model performance while also being practical. This 

methodology will allow the impact of color normalization algorithms to properly be evaluated 
and potentially make large strides in the use of CN algorithms as a general preprocessing 

implementation. There were two primary phases for testing the impact of color normalization 

with glomeruli and histopathological data. The first step was to choose three state-of-the-art color 
normalization methods: Reinhard, Macenko, and Vahadane. In order to compare the 3 different 

methods of color normalization tested (the 3 experimental variables being the color normalization 

techniques being tested, and the control being the baseline workflow without normalization), it 

was imperative that an array of color metrics, or measurements that indicate particular qualities of 
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an image’s color nature, was used. Rather than use a singular color metric to compare the 
performances of these different methodologies, an array of metrics was adopted due to the fact 

that since color can be measured in a myriad of ways: intensity, hue, saturation, etc. The use of a 

singular metric would not be indicative of the overall performance of a normalization technique 

[1]. The particular metrics adopted were based on previous work that evaluated the impact of 
color normalization through these metrics [17]. 

 

The particular metrics adopted include FSSIM, or the functional similarly index measure which 
screens for the quality of a new image in relation to an original; UQI, or universal quality index, 

which reflects the overall quality of an image; PCC, or the Pearson Correlation Coefficient, 

which measures the strength of the relationship between two images.  
 

 
 

Figure 7. First Testing Phase Workflow – The original dataset is normalized with each CN algorithm. 3 

different color metrics (PCC, FSSIM, and UQI) are subsequently applied to each dataset in order to gauge 

for quality. 

 

 
 

Figure 8. Second Testing Phase Workflow – The normalized datasets, along with the original, are 

subsequently fed into a deep learning model. Model performance is evaluated with the DSC metric. 

 

2.4. Model Training Environment  
 
With this methodology, various color normalization algorithms can be properly compared in 

multiple facets. Through the application of different color metrics, the quality of the data they 

produce can be evaluated. More importantly, the development of a U-NET deep learning model 

allows for the implications of the differently normalized datasets on model performance to be 
properly evaluated. The development of the aforementioned architectures will be conducted 

natively using the Google Collaboratory service. By utilizing cloud-based high-end GPUs, the 

training and testing requirements of this project may be fulfilled significantly faster.  
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3. RESULTS 
 

 
 

Figure 9. Example of Normalized Images – From left to right: Original Image, Macenko Normalized, 

Vahadane Normalized, Reinhard Normalized 

 

3.1. Color Metric Performance Results  
 

Comparing the qualities of the color normalized datasets in Figure 10, Vahadane possesses the 
composite highest quality. While the Reinhard-normalized dataset possesses the highest average 

PCC score, the Vahadane-normalized data boasts the highest average score for the FSSIM and 

UQI metrics. Since both the FSSIM and PCC metrics evaluate the quality of an image in relation 
to another, these metrics offer conflicting narratives about the quality of the generated images in 

relation in to the original. However, the UQI metric analyzes general images quality and does not 

do so in relation to another image. Based upon these results, a general ranking of the quality of 

each of the normalized datasets can be assigned (in highest to lowest order): Vahadane, Reinhard, 
Macenko.  

 

 
 

Figure 10. Color Metric Array Comparison - Blue: PCC; Orange: FSSIM; Gray: UQI 

 

From this initial analysis of the normalized data, it was deducted that since the Vahadane-

normalized data reflected attributes that suggested it was of higher quality than the other 
normalized datasets, that there would potentially be a correlation to better performance. This is 

because higher quality data may be more meaningful and beneficial for feature learning, 

contributing to better model performances.   
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The quality and effect of normalization on data can be further visualized by comparing the nature 
of the normalized data to that of the un-normalized, original dataset. The images were compared 

by using the average Hue and Saturation channel ratios of every single image in the dataset. This 

was done by converting each RGB image in all datasets into the HSV (Hue Saturation Value) file 

format. Then, the hue and saturation channels were extracted and compared for each image. This 
method is reflective of the effectiveness of color normalization, particularly within 

histopathological images with a bimodal nature, or of a nature in which two hues dominate the 

image when visualized with the hue channel [18].  
 

 
 

Figure 11. Average Hue vs. Saturation Intensities for Non-Normalized and Normalized Datasets 

 

As visualized above, every single normalization technique was able to effectively normalize the 
original data. The average Saturation vs. Hue intensity is significantly more concentrated for each 

of the normalized data ploys than that of the non-normalized data, which is indicative of effective 

color normalization. Furthermore, the styles and natures of the normalization techniques can also 

be observed with these plots. The Macenko and Vahadane plots are very similar, with a cluster of 
points congregated in a vertically linear fashion towards the right-most portions of the plot. In 

contrast, the Reinhard plot depicts a cluster of points arranged in a circular fashion, still closer to 

the right-edge of the plot. This is expected since the Macenko and Vahadane techniques operate 
very similarly, while the Reinhard method takes a very different approach in color 

transformation.   

 
Analyzing the plots of the normalized datasets, the quantity of outliers can be observed. Both the 

Vahadane and Macenko normalized datasets seem to have a limited numbers of points that are 

distant from a central cluster. In contrast, the Reinhard normalized dataset seems to have a 

significant number of outlier points. Many points on the Reinhard plot are very distant from the 
central cluster. The degree of alignment, although strong with all normalized datasets, appears to 

be weaker in the Reinhard normalized dataset. This could potentially be indicative of less 

effective normalization.  
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3.2. Model Segmentation Results  
 

It is critical that the effects of these color normalization techniques on the segmentation of the 

histopathological dataset be effectively tested. Since color normalization effects the nature of an 
image, and deep learning models segment these images to precisely identify particular 

morphological features, the effect of these techniques on deep learning segmentation was critical 

for a thorough understanding of the practicality that color normalization offers in the clinical 
context.  

 

Therefore, it was important to test for the effectiveness of color normalization techniques on the 

identification of glomerular structures within kidney WSIs.  
 

For the statistical validation of this data K-folds cross validation (CV) was used; K-folds CV is a 

commonly used tool to ensure that the results of machine learning performances are not merely 
coincidental [19]. As demonstrated in Figure 10, the testing partition of the data is varied with 

each run. With 10-fold CV, each dataset (original, and 3 normalized) is fed into the model 10 

times, each time with a different validation set. Each run returned a value for the DSC, which 
reflects a generalized performance of the model’s predicted segmentation accuracy.  

 

 
 

Figure 12. K-Fold Cross Validation – Retrieved from [20] 

 
Table 1. Average DSC Performances – Averages the DSC score outputted from a model trained on each 

dataset 

 

Average DSC with 10-Fold CV 

Dataset Original  Macenko  Vahadane  Reinhard 

HuBMAP 0.7963 0.8712 0.8124 0.8842 

 

As observed in Table 1, the Reinhard algorithm boasts the highest average DSC value. As this 

result is the culmination of 10 different runs, each with different folds of training and test data, 
this result is treated as non-coincidental and statistically-validated.  

 

These results suggest that although every single normalization technique improved upon the 
baseline performance of the deep learning model, the Reinhard algorithm was most successful in 

doing so. The Reinhard algorithm was able to achieve an average DSC of 0.8842, a massive leap 
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in performance compared to the average DSC of 0.7963 with the original dataset. Furthermore, 
the color metrics used to test the general quality of the produced images indicated that the 

Vahadane technique produced better quality images, but despite this, did not outperform the 

Reinhard technique. This result reinforces the prominence of the Reinhard algorithm in deep 

learning workflows that do utilize color normalization.  
 

4. CONCLUSION  
 

To conclude, it was found that color normalization has a significant impact on the identification 
of glomeruli within PAS-stained kidney whole slide images. Color normalization involves 

standardizing stain variations that may exist within a dataset. Of the 3 common color 

normalization algorithms tested, it was determined that all three of them resulted in higher 
segmentation performance for the tested dataset, as according to the Dice Score Coefficient, than 

the original dataset. This means that when fed with the normalized data, deep learning models, 

regardless of what normalized data it was fed, was able to recognize more glomeruli with higher 

precision than what it was able to when fed the original, non-normalized data. The quality of the 
segmentations produced also differed drastically. Often times, the segmentation produced by the 

model that was fed some type of normalized data was significantly more precise in a variety of 

aspects. Greater precision can be exhibited by the sheer number of structures within an image that 
was able to be identified by a deep learning model, and the edges of the segmentations (precise 

segmentations have rougher edges while less precise segmentation are rounder and more 

connected together, representing less precision). In order to obtain these results, it was imperative 

that the deep learning model used for experimentation was kept constant. Interestingly enough, it 
was determined that the original data was generally of a higher quality according to a myriad of 

color metrics applied. This supports the idea that quality does not translate to segmentation 

performance.  
 

The implications of this research are strong – as more attention is paid to the application of 

certain CN algorithms on the segmentation of not only kidney tissue, but other types of 
histopathological images, the biases that are often inevitable is histopathological datasets may be 

combatted. These are the same biases that render many, even highly-accurate models, impractical 

within a hospital setting. This research hopes to support a narrative, that, color normalization can 

aid in the reduction of bias present in stain data and make deep learning algorithms more suitable 
and safer to use in a clinical setting.  

 

4.1. Limitations  
 

This research is limited by only sourcing data from a singular dataset. By agglomerating data 

from diverse sources, the results of this study and corresponding application can be reinforced. 
Furthermore, the size of the dataset itself was quite small (~2600 images without augmentative 

procedures). In future studies, similar data from other datasets can be sourced and combined for 

larger datasets. Furthermore, this study is limited by the use of only a singular deep learning 
model (U-NET model) being used to test the effectiveness of normalization. Since only a single 

deep learning model is used, the impact of different normalization techniques is not fully 

portrayed. In future studies, testing multiple architectures will be considered so that more 
representative results can be conveyed.  
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4.2. Future Direction  
 

For future research, the application of new color normalization techniques can be explored and 

compared to the effectiveness of non-normalized, original data and even compared against 
conventional, state-of-the-art color normalization techniques. In this work, conventional 

techniques were tested. However, with the breakthroughs of new generative models, such as 

generative adversarial networks (GANs) in the field, new color normalization techniques are 
being developed which could have significant implications for the landscape. Furthermore, more 

model architectures other that U-NET can be tested.  
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