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ABSTRACT 
 
Data class imbalance is a common problem in classification problems, where minority class samples are 

often more important and more costly to misclassify in a classification task. Therefore, it is very important 

to solve the data class imbalance classification problem. The SMART dataset exhibits an evident class 

imbalance, comprising a substantial quantity of healthy samples and a comparatively limited number of 

defective samples. This dataset serves as a reliable indicator of the disc's health status. In this paper, we 

obtain the best balanced disk SMART dataset for a specific classification model by mixing and integrating 

the data synthesised by multivariate generative adversarial networks (GAN) to balance the disk SMART 

dataset at the data level; and combine it with genetic algorithms to obtain higher disk fault classification 

prediction accuracy on a specific classification model. 
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1. INTRODUCTION 

 
The basic storage device in the storage sector, the hard disk, is still the dominant device. To 

safeguard data integrity and prevent operational disruptions, it is vital to prioritize the 

implementation of disk failure prediction. This is primarily due to the inherent nature of disk 

damage, where retrieval of data becomes highly improbable once the disk is compromised. 

 
There exists a substantial disparity between the number of both positive and negative data 

instances(positive for failed samples and negative for healthy samples) in the SMART dataset, 

which is employed for the purpose of disk failure prediction, and the number of positive samples 

is far less than the number of negative samples when analysed against the widely used Backblaze 

public dataset. The effects of error-prone small separations, overlapping classes and the lack of 

training data for classifiers make it more difficult to design effective ML models [1]. The 

majority of prevailing machine learning models operate under the premise that the distribution of 

both positive and negative data instances is relatively balanced, along with the assumption of a 

uniform misclassification cost. When using the more common and efficient machine learning 

models on datasets with a large proportion of imbalances, this can lead to training models that 

focus on the majority class and identify all sample data as the majority class [2], whereas the 

class with a small number of samples (faulty samples) is often more important and significant 

than the other classes of data. In the field of disk failure prediction, the most common method 

used by researchers to solve the classification problem caused by class imbalance is the data-level 

approach, i.e. pre-processing the imbalanced dataset to achieve class balance before training for 

classification. 

https://airccse.org/journal/ijci/Current2023.html
https://doi.org/10.5121/ijci.2023.120605
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Data-level processing methods for disk SMART data imbalance are classified as: oversampling, 

undersampling, hybrid sampling, and generating model-generated data. The simplest of the 

oversampling methods [3-5] is random oversampling, which reduces the rate of class imbalance 

by replicating a small number of class samples so that the number of samples from both classes is 

similar, thus allowing more balanced training of the classifier. However, increasing the number 

of minority class samples creates too much redundant and overlapping data, leading to overfitting 

of the classification model to the replicated samples. The Synthetic Minorit Oversampling 

Technique (SMOTE) [6], by analysing the minority class samples (real samples), randomly 

selecting samples of similar distance, and generating new minority class samples without 

duplicates by the difference between two samples, can overcome the overfitting problem of the 

random oversampling method to some extent, but the type and number of samples generated, as 

well as the ability of SMOTE to handle sample noise, need further improvement and 

optimisation. Undersampling methods [7-9] are used to effectively reduce the imbalance between 

the majority and minority classes by reducing the number of majority class data. Random 

undersampling selects a random portion of samples from the majority class so that the number of 

selected majority class samples is equal to the number of minority class samples to form a new 

class-balanced dataset, but the majority class samples are ignored in this process, which affects 

the diversity and representativeness of the data and poses a challenge for the classifier to 

correctly learn the decision boundary between both positive and negative data instances, thus 

reducing the classifier performance. Hybrid sampling methods balance a data set by combining 

different data sampling methods. A common hybrid sampling method is a combination of 

oversampling and undersampling methods, where a few classes of data are oversampled and most 

classes are undersampled. 

 

By fitting the eigenfunctions of the samples using traditional methods, the simulated fault disc 

data can deviate significantly from actual faulty disc data, hence, these data are suboptimal. The 

above methods only change th0e number of data samples, but do not significantly enrich the 

sample set by increasing the number of samples in a few classes. By learning the probability 

distribution of authentic tabular data, Table GAN(a generic term for GAN models that can 

synthesise table data) can generate synthetic data that replicates the original distribution of 

authentic samples, thereby achieving the desired falsification outcome. The use of disk failure 

samples synthesised by Table GAN to balance the dataset [10,11] increases the diversity of the 

sample set while reducing the positive and negative sample imbalance ratio, which is beneficial 

to the improvement of disk failure prediction accuracy, but it is sometimes impossible to achieve 

Nash equilibrium using gradient descent. As a consequence, the training process of the GAN 

becomes precarious and occasionally fails to entirely grasp the distinctive attributes and 

underlying distribution of genuine data, resulting in the inability to generate synthetic data that 

accurately aligns with the distribution of authentic data. 

 

The innovative points in this paper are outlined as follows: 

 

In order to tackle the aforementioned issues, in this paper, we use multivariate GAN synthesized 

disk failure data before training the machine learning model, and find the optimal mixing ratio of 

the synthesized data by optimization algorithm (GA). The approach of this paper involves adding 

synthesized data from a multivariate GAN to the real dataset. This is done by determining the 

optimal mixing ratio, resulting in a disk SMART dataset that possesses a balance between both 

positive and negative data instances. The experiments are validated by repeated experiments on 

classification models such as Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), 

Decision Tree (Dec_Tree), Bayesian Network (Bayes) and RandomForest. According to the 

experimental findings, the optimal data is discovered by integrating the genetic algorithm with a 

hybrid integration approach that combines multivariate GAN-synthesized data mixing ratio can 

construct a balanced data set suitable for a specific classification model, which can better 
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alleviate the imbalance between positive and negative samples of disk SMART data and improve 

the accuracy of disk failure prediction. 

 

2. RELATED WORK 
 

2.1. Generative Model 
 

2.1.1. CTGAN 

 

CTGAN, known as "Conditional Tabular GAN", is an extension of GAN proposed by Xu L [12] 

at NeurIPS 2020. Its innovation lies in its ability to model the probability distribution of rows 

(samples) in tabular data and to generate realistic synthetic data. That is, CTGAN can model the 

distribution of features of continuous and discrete columns contained in the tabular data to 

generate synthetic data sets that match the distribution of the original data. 

 

For continuous columns, CTGAN generates new data based on the selected probability 

distribution function. At the same time, CTGAN generates more robust data by adding noise to 

the continuous columns according to the method used in the algorithm to protect the identifier 

information. For the category columns, CTGAN adds a conditional vector to the generator that 

fully captures the distributional characteristics of the category columns. Therefore, CTGAN is 

able to simulate the category proportions in the dataset very well at the time of generation, thus 

generating category columns that match the conditional distribution of the original dataset; and 

solving the data category imbalance problem by employing conditional generators and 

implementing training through sampling techniques. 

 

2.1.2. CopulaGAN 

 

To generate tabular datasets, CopulaGAN [13] employs a CDF-based transformation facilitated 

by Gaussian copulas as an adaptation of CTGAN. It leverages probabilistic integral 

transformations [14] to improve the fitting of the CTGAN model. CopulaGAN uses a copula 

function-based approach to learn and model the distributional relationships between arbitrary 

columns to capture the interactions between continuous and discrete columns in a dataset. Each 

column is modelled with a different Copula function in CopulaGAN and trained by the GAN 

framework to make the Copula distribution more similar to the true distribution of the dataset. 

The generator can then use the generated copula distributions to generate new tabular datasets 

while maintaining the correlation between all columns in the data. 

 

Unlike traditional GANs, CopulaGAN does not use random noise as input, but specifies input 

conditions, such as the distribution conditions of continuous and discrete columns. As a result, 

CopulaGAN can generate synthetic data sets that meet the requirements based on different input 

conditions, and can produce data sets of different sizes to meet different needs. 

 

2.1.3. CTAB-GAN 

 

The CTAB-GAN [15] model can effectively model a variety of data types, including continuous 

and discrete variables, and addresses data imbalance and long-tail problems in real tabular data 

sets by exploiting the information loss and classification loss of conditional GAN. The model has 

special conditional vectors that can effectively encode mixed data types and skewed distributions 

of data variables. 
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CTAB-GAN has the following advantages: large generation size: CTAB-GAN's tabular data 

generator can generate synthetic data sets of arbitrary size, which can be adapted to the needs of 

data of different sizes; high interpretability: CTAB-GAN's generator can not only take random 

noise as input, but can also specify input conditions. Thus, the generated data can be controlled 

by the input conditions, which is highly interpretable. Support for multi-attribute data generation: 

CTAB-GAN can model relationships between any number and type of columns to generate 

tabular data with multiple attributes. Data privacy protection: CTAB-GAN generates data without 

storing the original data, which protects data privacy. 

 

2.2. Classification Model 
 

2.2.1. MLP 

 

MLP, also known as Artificial Neural Network (ANN), is a forward-structured neural network 

that can be used to solve a variety of practical problems, such as classification problems, 

regression problems, image processing, and so on. It has good non-linear adaptation and 

generalisation capabilities. MLP consists of three layers: an input layer, a hidden layer and an 

output layer, where the nodes in each layer are fully connected to the nodes in the next layer. The 

input layer receives the input, the hidden layer processes the input, and the output layer generates 

the result. In addition to the input and output layers, it can have several hidden layers in between, 

as shown in Figure.1 below. 

 

 
 

Figure 1.  MLP network structure 

 

MLP layers are fully interconnected, with the bottom layer being the input layer, the middle layer 

being the 2 hidden layers, and the top layer being the output layer. Due to its very good nonlinear 

mapping capability, high parallelism and global optimisation, MLP has achieved good results in 

image processing, prediction systems and pattern recognition today [16]. 

 

2.2.2. SVM 

 

Support vector machine is a machine learning algorithm based on the principle of structural risk 

minimisation, which is based on statistical learning theory and automatically adjusts the model 

structure by controlling parameters to achieve empirical and structural risk minimisation [17]. For 

non-linear problems, such as disk failure prediction problems, SVM uses kernel functions to map 

the input data into a high-dimensional space to achieve linear separability of the high-

dimensional space, thus transforming non-linear problems into linear problems. 



International Journal on Cybernetics & Informatics (IJCI) Vol.12, No.6, December 2023 

57 

 
 

Figure 2.  Support vector machine classification hyperplane 

 

As shown in Figure.2, the left and right sides of the diagram represent different types of data, A, 

A1, A2 are the classification surfaces of the two types of data, where A1, A2 is the edge 

classification surface that divides the two types of data, margin is the classification interval 

between the two types, and the data points on A1, A2 is the support vector. The purpose of the 

support vector machine is to find an optimal classification surface that maximizes the 

classification interval between the two classes [18]. 

 

2.2.3. Decision Tree 

 

A decision tree is a tree-based machine learning algorithm that is widely used in prediction 

models for split problems. It uses a tree structure to extract multiple decision rules and gradually 

branches down from the root node to a leaf node, resulting in a final prediction [19]. In a decision 

tree, each internal node represents a decision to examine feature values, every leaf node 

symbolizes either a specific category or a prediction. The data set is recursively partitioned and 

divided to generate a decision tree. The implementation of the decision tree is as show in 

algorithm 1. 
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2.2.4. RandomForest 

 

Random forest, a representative algorithm of the integrated learning bagging method, is a 

comprehensive learning approach grounded on decision trees. The core idea is to use the bagging 

method to build multiple decision tree models for multiple sets of returned samples, specifically: 

each decision tree is a classifier and for an input sample, N trees yield N classification results, 

while Random Forest integrates all classification votes and designates the category with the most 

votes as the final output. In this method, each decision tree is constructed from randomly selected 

samples from the training set, the random forest randomly selects a subset of features to 

randomise the tree, and the features selected during the construction of the decision tree and the 

features of the split nodes are randomised. This method has a high degree of randomness, which 

can prevent overfitting and improve the performance of the algorithm. 

 

2.2.5. GaussianNB 

 

It is assumed that the conditional probability (Equation follows) of each characteristic variable 

under each category follows the Gaussian distribution, and then the posterior probability of a new 

sample belonging to each category under a given characteristic distribution is calculated 

according to the Bayesian formula. 

 

P(𝑥𝑖|𝑦𝑐) =  
1

√2𝜋𝜎𝑐𝑖
2

exp(−
(𝑥𝑖 − 𝜇𝑐𝑖)2

2𝜎𝑐𝑖
2 ) 

 

Where xi denotes the dimension of the feature h and the 𝜎𝑐𝑖  and 𝜇𝑐𝑖  distributions denote the 

standard deviation and expectation corresponding to the feature a under the category y = c. 

Like other simple Bayesian classifiers, GaussianNB performs well on high-dimensional data. It is 

also friendly to missing values and can handle continuous numerical data well. GaussianNB 

requires less data for training, is a simple and efficient classifier with stable performance, and can 

be applied to a variety of different classification problems. 

 

2.3. Genetic Algorithm 
 

Genetic algorithms (GA) originated from computer simulations of biological systems and are a 

stochastic global search and optimization method that mimics the evolutionary process of 

organisms, simulating the natural selection and genetic reproduction, crossover, and mutation that 

occur in nature, which reproduce and evolve from generation to generation, and finally converge 

to a group of individuals best adapted to the environment to find a quality solution to the 

problem, which can be described by the following mathematical programming model [20]: 

 

{

𝑚𝑎𝑥𝑓(𝑋)(1)

𝑥 ∈ 𝑅            (2)

𝑅 ⊂ 𝑈           (3)
 

 

In the above equation, where equation (1) is used as the objective function, X is the decision 

variable, equations (2) and (3) are used as constraints and R is a subset of the underlying space U. 

A feasible solution X is a solution consisting of solutions satisfying the constraints, and the set R 

of feasible solutions is the set consisting of solutions satisfying the constraints. 

 

Common terms used in genetic algorithms are defined as follows: 
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Chromosomes: Chromosomes can also be referred to as genotyped individuals, a certain number 

of individuals make up a population, and the number of individuals in a population is called the 

population size. 

 

Genes: Genes are elements of chromosomes that are used to represent an individual's 

characteristics. For example, if there is a chromosome S=1101, the four elements 1, 1, 0, 1 are 

called genes. 

 

Adaptation: The degree to which each individual adapts to its environment is called the degree of 

adaptation. To capture the adaptive capacity of chromosomes, a function is introduced that 

measures each chromosome in the problem, called the fitness function. This function is often 

used to calculate the probability that an individual will be used in a population. 

 

Genotype: Also known as genotype, the genome defines the genetic features and expressions that 

correspond to the chromosomes in the GA. 

 

Phenotype: The characteristics of an organism's genotype as expressed in a given environment. 

The parameters corresponding to the decoded chromosomes in GA. 

 

Each possible solution is encoded as a chromosome, and a large number of individuals make up 

the population. At each iteration of the population, the best individuals of the generation are 

selected based on their fitness and by performing replication, crossover, and mutation operations. 

During the evolution of each generation, the population becomes more and more adaptive, and 

eventually the optimal solution of the problem can be obtained by decoding the optimal 

individuals in the last generation,  as show in algorithm 2. (Define: M: Population size; T: 

Iterations; pc: Crossover probability;pm: Mutation probability;) 

 

 
 

3. DATA AND FEATURE SELECTION 
 

3.1. Data Selection 
 

The Backblaze website provides the public hard drive dataset, which was used as the 

experimental dataset in this paper. Because different hard disk manufacturers define and value 
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their hard disk SMART characteristics differently, it is normal for the same SMART 

characteristics to have different meanings for different manufacturers' hard disks [21]. The 

datasets of numerous hard drive models exhibit a considerable proportion of normal hard drive 

information compared to a minimal number of failed hard drives, creating a very serious class 

imbalance and making hard drive failure prediction difficult. In this paper, the construction of the 

experimental dataset focuses on addressing the adverse effects caused by class imbalance. To 

ensure the validity of the study, the SMART data from Backblaze for the disk model 

ST4000DM000, which had the highest occurrence of failure states throughout the entire year of 

2020, was utilized. 

 

3.2. Feature Selection 

 
With the aim of enhancing classification accuracy, reduce training time and reduce overfitting, it 

is necessary to select the features that are more useful for predicting disc failure. There are 126 

attributes on the SMART data disc. To avoid the challenges posed by large data volumes and 

numerous attributes, it becomes imperative to conduct feature selection. This process ensures that 

the dimensionality catastrophe is averted. Feature selection can remove unnecessary or redundant 

attributes, thus reducing the dimensionality of the feature space and the complexity of the model, 

which can help the model to better describe the data, enhance the modle's recognition rate and 

prediction ability, and reduce the training time and computational cost. 

 

The attribute composition of the experimental dataset used in this study was determined based on 

a combination of the literature [22] and [23] where the discussion and experimental analysis were 

presented. Table 1 presents the selection of the 11 SMART attributes for the dataset in this paper. 

 
Table 1.  List of SMART data items selected for fault prediction. 

 

ID SMART data item name 

1 Raw Read Error Rate 

3 Spin Up Time 

5 Reallocated Sector Count 

 
5(raw) Reallocated Sector Count(original value) 

 
7 Seek Error Rate 

9 Power On Hours 

187 Reported Uncorrectable Error 

189 High Fly Writes 

194 Temperature Celsius 

197 Current Pending Sector Count 

 

 
197(raw) Current Pending Sector Count(original value) 

 

3.3. Data Normalisation 
 

Big data has characteristics such as large volume and variety, and large and disordered data can 

have a great impact on research results [24]. In machine learning tasks, large data should be pre-

processed in a normalised way to improve the prediction accuracy of models [25,26] and achieve 

high performance of machine learning [27]. Data normalisation is an important step in data pre-

processing. By normalising the data, it is possible to improve the robustness and performance of 
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the algorithm by avoiding the dominant effect of highly variable attributes on the training of the 

model. Avoiding errors and ensuring that the data are in the same size space allows for a fairer 

comparison between attributes. 

 

In this paper, StandarScaler is used to normalise the data so that the processed data conform to 

the standard normal distribution; then Min-Max normalisation is used to normalise the dataset 

(Equation follows) to map all the data to between [-1,1], which does not change the data 

distribution after processing the original data and better preserves the data characteristics. 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙 = 2 ∗
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 

 

The equation defines x as the pre-normalization value. Xnormal represents the normalized value, 

while xmin and xmax correspond to the minimum and maximum values of an attribute column in 

the dataset, respectively. 

 

4. HYBRID POLICY SELECTION IMPLEMENTATION OF MULTIVARIATE GAN 

 
To address the adverse effects of the imbalance of disk SMART data categories and the use of 

resampling to mitigate this problem, this paper makes improvements based on the data-level 

approach and implements a data-level hybrid policy selection method for disk failure prediction 

models based on multivariate GAN: 

 

1. Based on three different GAN models for synthesising tabular data: CTGAN, CopulaGAN 

and CTAB-GAN, the three GAN models were trained separately using the real SMART 

dataset (the partitioned training set) to generate "fake data", and the synthesised tabular GAN 

models were filtered out for use in The disk failure samples synthesized by each table GAN 

model for balancing the disk SMART data were selected as the data set to be used to balance 

the real SMART data set. This is illustrated in Figure.3. 

 

 
 

Figure 3.  Schematic of GAN synthetic dataset 

 

2. The genetic algorithm populations were used to represent the proportion of mixed integration 

data from the three GAN models, and the proportion of mixed data was represented by the 

decoded phenotypes of the chromosomal genotypes. For example, Figure.4, the data sets 
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from each GAN model were mixed and integrated into the real SMART dataset to build a 

positive and negative sample balanced dataset, and the classification model was used as a 

selection method to find the best data proportion for a particular classification model through 

generational gene duplication, exchange and mutation, using the "elite retention" method. 

The optimal ratio of synthetic GAN data mixed and integrated for a particular classification 

model is found, resulting in a positive and negative sample-balanced disc SMART dataset. 

3.  

 
 

Figure 4. Illustration of genotype decoding into expressions 

 

4. The implementation of the data-level hybrid policy selection method for multivariate GAN-

based disk failure prediction models combines a classification model with a traditional 

genetic algorithm, incorporating the classification model as the fitness calculation function in 

the genetic algorithm, using the classification model as the fitness function in the genetic 

algorithm, so that the output of the trained predicted values of the classification model is used 

as the fitness of the chromosomal individuals (the hybrid integrated data portion of the 

synthetic data of the three GAN models). 

 

After iterating the genetic algorithm, the best balanced disk SMART dataset for different 

classifiers is finally obtained, and then the balanced disk SAMRT dataset for this classifier is 

used on the specified classifier to achieve better results in disk failure prediction and improve the 

accuracy of disk failure prediction, and in this paper, the proposed data-level hybrid policy 

selection method is evaluated for validating the effectiveness of the multivariate GAN-based 

model in predicting disk failure. 

 

5. EXPERIMENTATION AND ANALYSIS 

 
Note: The parameter settings of the generative models (CTGAN, CopulaGAN, CTAB-GAN), 

classification models and genetic algorithms used in this experiment are listed in Table 2. 

 
Table 2.  Parameters involved in the experimental model. 

 
CTGAN epochs=300 

CopulaGAN epochs=300 

CTAB-GAN Epochs=300 

MLP input_features=11, hidden1=30, hidden2=30, out_features=2 

SVM C=100, gamma=1 

Decision Tree max_depth=9 

RandomForest n_estimators=100 

GA Population size=150, Iterations=50, Chromosome number=12, 

Crossover=0.8,Mutation=0.01  
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5.1. Experimental Dataset Setup 
 

The base dataset used for this experiment was a 1:100 positive to negative sample ratio disc 

SMART dataset selected from a full year of a complete year (2020) of publicly available data 

published by Backblaze. In the test set, 30% of this dataset was chosen before and after 

balancing, while 70% was utilized as training set A to assess the classification effects before 

balancing, as the training set B for training each tabular GAN model to synthesize the data, and 

as the initial dataset C for mixing and integrating with each GAN model. The new balanced 

dataset is formed by mixing and integrating the data synthesized by each GAN model. A 

balanced dataset is constructed by integrating a mixture of disk failure data synthesized using a 

multivariate GAN into the base dataset as training data, and comparing the performance of the 

unbalanced training set A on the classification model.(Note: Training set A, training set B, and 

initial dataset C are equivalent and are 70% of the data split from the base dataset, and are set as 

A, B, and C to distinguish them from each other when later applied to different aspects.) 

 

5.2.  Evaluation Indicators 
 

The G-mean[6] was used to evaluate the performance of the classification model in this 

experiment, and a confusion matrix defined as follows (see Table 3) was used to calculate the G-

mean values. 

 
Table 3.  Confusion matrix. 

 
Predicted as failure Predicted as normal Classified as 

TP(True Positive) FN(False Negative) True Fault 

FP(False Positive) TN(True Negative) True Normal 

 

The overall performance of the classifier is evaluated using the G-mean (geometric mean). An 

elevated G-mean is achieved whenever both bad and normal discs are classified correctly, and the 

use of other evaluation metrics is not accurate for classifying unbalanced data on the classifier: 

 

5.3. Experimental Setup 

 
5.3.1. GA Advantage Search Experiment 

 

The experimental structure of the data-level hybrid policy selection method based on multivariate 

GAN for the disk failure prediction model is shown in Figure.5. 
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Figure 5. Experimental structure 

 

5.3.2. Validation Experiment 

 

As shown above, the training set B, divided by the base dataset, is used to train generative 

models: CTGAN, CopulaGAN and CTAB-GAN, and the disk failure samples synthesized by 

each tabular GAN model for balancing the disk SMART data are filtered out and used as the data 

set for balancing the real SMART data. 

 

The genetic algorithm is set with an appropriate population size N, and the number of 

chromosome genes n. During the iterative process of the genetic algorithm, the three GAN-

synthesized datasets are mixed and integrated into the initial dataset C. The mixing ratio is 

determined by the decoded chromosome genotypes. The resulting balanced dataset is then 

utilized as the training set to train the classification model, which serves as an adaptation 

function. The predicted output of the classification model is used as the fitness measure for each 

chromosome. After iterating until the termination condition of the genetic algorithm is reached, a 

dataset is generated that achieves the best training and testing results in terms of the integration 

ratio of multivariate GAN synthetic data mixtures, while simultaneously achieving a balance 

between both positive and negative data instances. 

 

In this validation experiment, three sets of experiments are set up to verify the effectiveness of 

the data-level hybrid policy selection approach proposed in this paper for the multivariate GAN 

based disk failure prediction model, using different training sets on multiple classification 

models. The different training sets used in the three sets of experiments are: a: The base dataset is 

divided, with 70% allocated to the training set; b: Using CTGAN, CopulaGAN and CTAB-GAN 

to synthesize a balanced dataset together with the initial dataset; c: The dataset c is a mixture of 

synthetic data from the multivariate GAN and added to the initial dataset to form a balanced 

dataset based on the results of the genetic algorithm on a specific classification model. the data 

from the multivariate GAN is mixed and integrated into the initial data set to form the balanced 

dataset. As illustrated in Figure.3, Utillizing the training set A as the benchmark dataset, Table 

4illustrates the distribution and ratio of both positive and negative data instances within the 

training set for all three sets of comparative experiments. 
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Table 4.  Proportion of both positive and negative data instances from the experimental dataset. 

 
Dataset Composition Proportion of positive 

and negative samples 

Data ratio ofrealdata 172：17400 

Balanced data(CTGAN or 

CopulaGAN or CTAB-GAN) 
17400：17400 

Balanced data(CTGAN+ 

CopulaGAN+CTAB-GAN) 

17400:17400 

 

5.4. Comparison of Experimental Results 
 

5.4.1. Comparison of Experimental Results 

 

The results of the GA search experiments can be found in Table 5. By examining the data 

presented in the aforementioned Table, it becomes evident that for the best prediction of disk 

faults using different classification models, the GA-seeking ratio of the hybrid ensemble of 

multivariate GAN synthetic data is different. In this paper, we investigate the data-level hybrid 

policy selection for a multivariate GAN based model of disk failure prediction, which positively 

contributes to the prediction of disk failures. 

 
Table 5.  Optimal data mixing ratios for GA search. 

 

Classification Model The ratio optimized by 

GA 

MLP 0.412:0.0:0.588 

SVM 0.857:0.0:0.143 

DecisionTree 0.40:0.133:0.467 

Bayes 0.565:0.348:0.087 

RandomForest 0.167:0.167:0.669 

 

5.5. Validating Experimental Results 

 
The three datasets a, b, c used for comparison and validation experiments are used as training sets 

to train different classification models and output G-mean results for disk fault prediction. The 

third dataset, c, used for the unclassified model, corresponds to the balance of positive and 

negative samples constructed by combining the results of GA with different classification models 

and the initial dataset c. The experimental results are shown in Table 6. 

 

From the results of the validation experiment it can be seen that compared with the other four 

datasets, the classification model trained on training set A (With a ratio of 1:100 between both 

positive and negative data instances ) has the lowest disk failure prediction results. The reason is 

that the training set A, a real disk SMART dataset, has very unbalanced positive to negative 

samples, which causes the classification model to focus on the majority class, the healthy 

samples, and ignore the influence of the minority class, the faulty samples. A balanced dataset of 

both positive and negative data instances constructed from the synthetic dataset produced by the 

single-table GAN mode and the initial dataset C, is used to train the classification model and 

achieve better results. However, the balanced dataset constructed by using the optimal mixture of 

GA and classification models to find the optimal integration ratio of the multivariate GAN 

synthesized data outperforms the balanced dataset with a single tabular GAN on all five 
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classification models, its G-mean output on the above five classification models is 86.4% on 

average. 

 
Table 6.  Test results of classification models trained with different training sets. 

 
Classification 

Model 

1:100 CTGAN CopulaGAN CTAB-GAN Optimized 

by GA 

ANN 0.426 0.858 0.657 0.711 0.902 

SVM 0.426 0.852 0.621 0.698 0.854 

Decision Tree 0.603 0.543 0.670 0.855 0.904 

Bayes 0.654 0.045 0.090 0.619 0.725 

RandomForest 0.452 0.657 0.564 0.896 0.936 

 

It can be seen that the effectiveness of the data-level hybrid policy selection employed in the 

multivariate GAN-based disk failure prediction model investigated in this study has been verified 

and beneficial for disk failure prediction efforts. 

 

6. SUMMARY AND PROSPECT 

 
In the era of extensive data growth, particularly within the realm of big data, the storage of this 

data primarily takes place on disks located in data centers. However, in the unfortunate event of 

disk damage, the data stored on these disks faces the risk of permanent loss. Hence, the prediction 

of disk failure becomes crucial in ensuring data integrity. Nonetheless, an inherent challenge lies 

in the severe imbalance between fault samples and normal samples within the SMART data that 

records the characteristics of these disks. This severe imbalance poses significant inconvenience 

in conducting accurate disk failure prediction. The main contributions of this paper are the use of 

hybrid ensemble multivariate GAN synthesized data combined with genetic algorithms to 

construct balanced datasets at the data level, and the experimental validation of the performance 

of pre- and post-balanced datasets on various classification models. 

 

While the suggested approach of employing a balanced dataset method does enhance the 

accuracy of disk failure prediction to a certain degree, there remains scope for further 

improvement. Key areas for consideration encompass the following aspects: 

 

1. Feature selection involves determining the significance of attributes within a dataset through 

a selection process. If a smaller dimensional dataset can be constructed that better reflects the 

disk properties, it will improve the efficiency of disk failure prediction. 

2. The synthetic datasets used to balance the datasets in this paper are directly drawn from the 

sample derived from the GAN's generation. The effectiveness can be enhanced by 

eliminating noise from the data and ensuring a higher similarity between the synthetic data 

sample and the real data sample through the process of data cleaning. 

3. The synthetic datasets used to balance the datasets in this paper are directly drawn from the 

sample derived from the GAN's generation. The effectiveness can be enhanced by 

eliminating noise from the data and ensuring a higher similarity between the synthetic data 

sample and the real data sample through the process of data cleaning. 
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