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ABSTRACT 

 
Tomato plants' susceptibility to diseases imperils agricultural yields. About 30% of the total crop loss is 

attributable to plants with disease. Detecting such illnesses in the plant is crucial to avoid significant 

output losses.This study introduces "data fusion" to enhance disease classification by amalgamating 

distinct disease-specific traits from leaf halves. Data fusion generates synthetic samples, fortifying a 

TensorFlow Keras deep learning model using a diverse tomato leaf image dataset. Results illuminate the 

augmented model's efficacy, particularly for diseases marked by overlapping traits. Enhanced disease 

recognition accuracy and insights into disease interactions transpire. Evaluation metrics (accuracy 0.95, 
precision 0.58, recall 0.50, F1 score 0.51) spotlight balanced performance. While attaining commendable 

accuracy, the intricate precision-recall interplay beckons further examination. In conclusion, data fusion 

emerges as a promising avenue for refining disease classification, effectively addressing challenges rooted 

in trait overlap. The integration of TensorFlow Keras underscores the potential for enhancing agricultural 

practices. Sustained endeavours toward enhanced recall remain pivotal, charting a trajectory for future 

advancements. 
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1. INTRODUCTION 
 
Tomato (Solanum lycopersicum), one of the most extensively cultivated and economically 

significant crops worldwide, faces numerous diseases that adversely affect its leaves, ultimately 

compromising its overall health and productivity. These diseases often manifest as symptoms 
such as discoloration, lesions, spots, and leaf deformities. Various pathogens, including fungi, 

bacteria, viruses, and environmental factors, can trigger these ailments. Examples of tomato 

diseases encompass bacterial spots, early blight, target spot, late blight, leaf mold, yellow leaf 

curl virus, septoria leaf spot, and spotted spider mite. To ensure sustainable tomato production, 
comprehending and effectively managing these diseases is crucial, given the pivotal role that 

tomato leaves play in photosynthesis and the overall vitality of the plant. 

 
Image processing involves the intricate manipulation and analysis of visual data captured in 

images. Various algorithms and techniques are employed to enhance, transform, or extract 

valuable insights from digital images. This interdisciplinary field integrates aspects of computer 
science, mathematics, and engineering to process images for diverse applications, including 

image enhancement, object recognition, pattern discovery, analysis of plant disease imagery, and 

medical imaging. In disease analysis, image processing enables efficient analysis and 

quantification of various elements, such as disease symptoms, patterns, and their correlations 
with environmental factors. Image processing aims to enhance and interpret visual input using 
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computational methods, enabling computers to perceive and comprehend images analogous to 
human vision. 

 

There is always a necessity to use scientific techniques because it is exceedingly challenging and 

ineffective to diagnose diseases by eye [1]. Farmers in the majority of our native environments 
are compelled to think creatively about traits or characteristics that have evolved, and these 

enable them to develop appropriate mechanisms that may help in the eradication of underlying 

diseases or pest attacks [2]. Formal training is necessary to give people the scientific information 
to understand this issue wisely and generate cutting-edge solutions to remove it [3]. 

 

Although several machine learning models are utilized for the recognition and classification of 
images, the potential of conventional image recognition algorithms is often only partially 

realized. This field of Deep Learning study has lots of potential in terms of increased accuracy, 

especially given the expanding growth of Deep Learning technology, which has benefitted the 

agricultural industry. Precision agriculture regularly uses image processing. Agriculture-related 
image processing was covered in-depth in the literature. Image processing is employed in various 

applications, including identifying, quantifying, and categorizing plant illnesses [4] and 

phenotyping plant disease signs [5].  
 

Deep learning, being a prolific tool, has been frequently utilized in plant disease detection, with a 

specific emphasis on its application in diagnosing diseases affecting tomato plants. Mohanty et al. 
[6] used deep learning to detect illnesses in the leaves of several plants. The paper's approach is 

tailored to address the detection of prevalent tomato plant diseases, including bacterial leaf spot, 

septoria leaf spot, and numerous others. It can classify input leaf images into specific disease 

categories or ascertain their health status. A dataset derived from a subset of PlantVillage [7] was 
utilized for evaluation, encompassing 15 directories pertaining to three distinct crop varieties. 

The subgroup includes around 16,024 images of tomato leaf diseases. Similarly, authors in [8] 

augmented the data, which consists of 18 diseases of tomatoes.  
 

Moreover, Prajwala et al. [9] worked on unstructured images and classified them. They 

performed experiments using AlexNet [10] and GoogleNet [11], and the best results were 

obtained during the use of LeNet architecture [12]. The Gabor wavelet transformation technique 
has been used to extract and identify tomato diseases [13]. Ashqar et al. [14] performed a 

controlled laboratory environment to produce images of healthy and unhealthy tomato leaves. 

Llorca et al. [15] collected the images from Google Images to identify the different diseases. 
Recently, scientists developed several customized convolutional neural network models and 

transfer learning (TL)-based models to identify tomato leaf disease [16-19]. 

 
Reviewing previous research has overwhelmingly demonstrated that the majority of deep 

learning studies focused on predicting tomato diseases have typically centered on predicting a 

single disease in each test. We found that the monopoly detection mechanisms mostly predicted 

different diseases in the presence of another disease on the same tomato leaf. We proposed an 
augmentation process on the PlantVillage dataset to confuse the existing prediction tools. We 

propose a four-way method for this work: Data Acquisition, Pre-processing, Data Splitting and 

Fusing, and Classification. The final stage of the classification utilizes TensorFlow's Keras, which 
has an intuitive and powerful framework commonly used to build classification models. 

 

The rest of the research paper is structured as follows: Section 2 focuses on the existing research 
in the relevant field. Section 3 explains the methods for acquiring the required findings alongside 

the model and proposed technique. Section 4 presents the results and examines the suggested 

methodology. The conclusion and outlines of the future research directions are presented in 

Section 5. 



International Journal on Cybernetics & Informatics (IJCI) Vol.12, No.7, December 2023 

33 

2. LITERATURE SURVEY 
 
Plant leaf disease detection constitutes a significant research domain, where the amalgamation of 

image processing and deep learning techniques has resulted in precise classification. This article 

delves into prevalent methods incorporated within the literature in this domain. 

 
In the paper [8], the authors used a dataset that contained 18 diseases of tomatoes. They used 

augmentation to increase the dataset from 13,112 to 41,263. They employed five types of 

Convolutional Neural Networks for classification based on the training they are 
DenseNet_Xception, Xception, Resnet50, MobileNet, and ShuffleNet. They comprise layers that 

perform convolutional operations to extract local features from the input data. The accuracy 

during training was obtained as 97.10%, 93.10%, 86.56%, 80.11%, and 83.68% from 

DenseNet_Xception, Xception, Resnet50, MobileNet, and ShuffleNet, respectively. The best 
recognition accuracy of DenseNet_Xception is 97.10%, though the parameters for this method 

were the most in number. ShuffleNet employed the least number of parameters but recorded an 

accuracy of 83.68%. ShuffleNet was trained using an augmented data set with optimized 
parameters and performed well during training and validation. The effect of epoch on the 

accuracy consistently rises and converges at 1 without any significant drops, typically indicating 

that the neural network has learned the training data exceptionally well. The model achieved 
learning success by keeping the Converging about the 1 point through to 1000, 2000, and 3000 

epochs. If accuracy increases, a loss is expected to depreciate in the manner of optimum training. 

 

In the paper [9], the authors began with Data Acquisition, Data preprocessing, and classification 
using Convolutional Neural Networks (CNN) to develop the model that worked on unstructured 

images and converted them to corresponding classification output labels. The model was trained 

using 10, 20, and 30 epochs, which are mentioned in Table 1. Validation was performed using a 
Confusion Matrix. From the outcome, the observation was that, as the number of training 

processes (epochs) increased, so did the accuracy, prediction, recall, and consequently, the F1-

Score. 
 

Table 1. Evaluation of epochs 

 

 
 
The methodology detailed in the paper [13] presented how the Gabor wavelet transformation 

technique was employed to extract distinctive features that helped to identify diseases in tomato 

leaves. Subsequently, these extracted features are input into a Support Vector Machine (SVM) 
classifier for training, enabling the determination of the specific disease affecting the tomato 

leaves. Before the feature extraction, the preprocessing stage involves image resizing, noise 

reduction, and background elimination tasks. The research used the Gabor transformation to 
capture textual patterns inherent in the affected leaves and extract relevant features. Disease 

classification conducted using SVM with varying kernel functions was performed. There was 

cross-validation on performance evaluation. TheROC curve of SVM using the invmult kernel 

produced an AUC of 0.90705, while the one using the Laplacian kernel produced an AUC of 
0.99679. Experimental results indicate an impressive accuracy rate of 99.5% achieved by the 

proposed system. 
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However, it is necessary to note the utilization of Gabor transformation for feature extraction 
comes with the limitation of computational intensiveness. In the paper [14], the authors employed 

a dataset comprising 9000 images of infected and healthy tomato leaves. All images were 

produced within a controlled laboratory environment. This dataset, obtained from the 

PlantVillage repository, was utilized for the purpose of categorizing five specific diseases: leaf 
curl, bacterial spot, septoria leafspot, early blight, and leaf mold. A comprehensive color model 

was utilized for disease spot classification to facilitate data visualization, while a grayscale model 

was employed to capture the underlying leaf shapes and visual disease patterns. The results 
revealed that the full-color model achieved superior accuracy compared to the grayscale model. 

Notably, the captured results were obtained under precisely controlled conditions within the 

PlantVillage dataset, thereby introducing a potential limitation to the model's applicability in a 
more diverse setting. 

 

In the paper [15], the authors used a dataset comprising 2,779 images from Google Images. These 

images encompassed various instances of hornworms, powdery mildew, cutworms, early blight, 
and whiteflies. Notably, each disease category contained 550 images. This quantity is considered 

limited for robust training, potentially giving rise to overfitting concerns. The author employed 

data augmentation techniques to mitigate the overfitting challenge, including vertical flips and 
random scaling. These techniques introduce diversity and variability into the dataset, contributing 

to a more generalized and resilient model. 

 
While Convolutional Neural Networks (CNNs) are well suited for deciphering image content, it 

is worth noting that training a CNN from scratch demands substantial computational resources 

and a vast dataset. The author opted for a transfer learning approach, utilizing the Google 

Inception model as a foundation. By leveraging pre-trained weights and features from the 
Tensorflow Inception V3 model, the author was able to capitalize on its learned representations 

and optimize the training process, effectively sidestepping the need for extensive data and 

computational power after the model achieved an accuracy of 88.90%. 
 

The dataset for the paper [16] was obtained from Ehime University in Matsuyama. The scientists 

developed several simultaneous convolutional neural networks with various topologies to identify 

tomato leaf disease. To significantly improve the network's performance, they used the activation 
layers Swish, LeakyReLU-Swish, ReLU-Swish, Elu-Swish, and ClippedReLU-Swish in addition 

to the Batch Normalization-Instance Normalisation layer. That allowed them to achieve 

classification accuracy of over 99.0% with training datasets, 97.5% with validation datasets, and 
98.0% with testing datasets. Although different performance metrics were observed, none of the 

suggested networks overfit the validation dataset.  

 
They also employed a variety of methods to visualize network performance. It showed how the 

networks (Network 1, Network 2, Network 3, Network 4, Network 5) learn from the training 

dataset and could show infected leaf areas with high confidence scores under actual 

circumstances. In terms of network stability and illness location visualization, Network 1 
performed the best. The shortcomings of Networks 4 and 5 in predicting the Healthy class could 

be resolved by computing, summarising, and rating the output of several parallel convolutional 

neural networks [16]. 
 

Reference [17] introduces a study that put forward a custom convolutional neural network (CNN) 

model with a lightweight architecture and employed Transfer Learning models VGG-16 and 
VGG-19 to classify tomato leaf diseases. This research utilized eleven classes, with one type 

dedicated to healthy leaves, to replicate various tomato leaf disease scenarios. Furthermore, the 

study conducted an ablation study to pinpoint the most influential parameters for the proposed 

model. Moreover, evaluation metrics were used to analyze and compare the performance of the 
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proposed model with the TL-based model. By applying data augmentation techniques, the 
proposed model achieved the highest accuracy and recall of 95.00% among all the models. 

Finally, the best-performing model was utilized to construct a Web-based and Android-based 

end-to-end (E2E) system for tomato cultivators to classify tomato leaf disease. 

 

3. PROPOSED METHODOLOGIES 
 

3.1. SYSTEM OVERVIEW 
 

This research aims to create a model using deep learning that can predict several diseases of 

tomatoes on the same leaf. Therefore, splitting and fusing distinct diseased leaves would be 
beneficial. The proposed Split and Fuse model seeks to employ the procedures shown in Figure 1. 

 

 
 

Figure1. The proposed procedure from data collection to evaluation of the results. 

 

3.2. Data Collection 
 

The dataset comprises images of tomato leaf diseases sourced from the Plant Village repository 
[7]. With a collection of about 16,024 images, it encompasses ten distinct classes. These classes 

encompass a comprehensive range of leaf diseases that have the potential to impact tomato crops. 

Some of these diseases are Bacterial spot, Early blight, Late blight, Leaf mold, septoria leaf spot, 

Target spot, etc. 
 

3.3. Data Pre-processing 
 

The dataset we obtained featured images that exhibited minimal noise, obviating the requirement 

for noise removal as a preliminary procedure. The images were resized to dimensions of 255 × 
255 to accelerate the training phase and render model training computationally viable. The neural 

representation of resizing and rescaling is shown in Figure 2. 
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Figure2. The process or pre-processing of the proposed method 

 

Deep learning models can effectively train on small-sized images; therefore, reducing the size of 
the input images would contribute to the effective training of the model. However, it is important 

to note that while the images are scaled down slightly, the essential features and patterns 

necessary for the disease classifications get preserved due to the minimal reduction in size. That 

enables the training process to be more resource-effective without significantly sacrificing the 
accuracy of the model's predictions. 

 

3.4. Data Splitting and Fusing 
 

Conventional data augmentation techniques aim at diversifying training data by applying 

transformations to existing samples. Commonly used augmentation techniques include rotations, 
flips, translations, changes in brightness and contrast, and more. These transformations help the 

model become more robust by exposing it to variations of the same data. The method needs to 

incorporate a seasoned approach. The brain behind this work is to transform the data by splitting 
each image into two halves from a particular class and fusing each half with another disease 

image from a different class without duplication to maintain uniqueness. Figure 3 shows the 

process of splitting and fusing the images. 
 

 
 

Figure 3. The process of splitting and fusing the images 

 
Through data splitting and fusing, an image from a particular class undergoes division into halves 

and subsequent fusion with corresponding halves sourced from different ones. The overarching 

objective of this technique is to replicate intricate interactions across diverse disease classes, 

thereby generating fresh instances that might not naturally arise. This approach seeks to facilitate 
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the model's training in discerning nuanced disease characteristics, ultimately bolstering its 
capacity to generalize effectively to real-world scenarios. 

 

With a focus on maintaining distinctiveness, the dataset was constructed by implementing the 

split-and-fuse method on a selected number of classes. This undertaking resulted in the creating 
of a total of 20 new sub-classes for the designated activity. An illustrative example is presented in 

Figure 4, showcasing the fusion of half of an image depicting Tomato Leaf Mold. The Tomato 

Leaf Mold class is with half of the Healthy class. Additionally, it is noteworthy that a hybrid 
image featuring half of the septoria leaf spot has been seamlessly integrated with late blight, as 

exemplified. 

 

 
 

Figure 4. Fused diseases from different classes 

 

3.5. Augmentation 
 

In the context of Convolutional Neural Networks within the domain of Deep Learning, achieving 
a more robust outcome is mapped to the availability of a substantial volume of data [8]. Even 

with the possession of a dataset comprising 15,000 instances, the strategic implementation of 

methodologies aimed at data augmentation emerges as a pivotal avenue for enhancing the quality 

of this study. Data augmentation represents a canonical strategy employed to amplify the expanse 
of the dataset corpus, concurrently affording a mitigation mechanism against the potential pitfalls 

of overfitting [16]. The significance of this approach lies in its ability to integrate modified 

images into the training dataset, utilizing a variety of techniques like image flipping, rotation, 
color manipulation, stochastic cropping, and other methods, as cited in reference [17]. Figure 5 

illustrates how images are flipped and rotated. 

 

 
 

Figure 5. The proposed method to flip and rotate the images 

 
We leveraged the Keras API within TensorFlow. Through this approach, we established a 

preprocessing pipeline that takes care of the resizing and rescaling input images, ensuring their 

proper formatting and scaling before their inclusion in the neural network model for training. 
Keras, an open-source high-level neural network API has been designed for creating effective 
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deep learning models. The pixel values were also rescaled by dividing them by 255, bringing 
them into the range of [0,1] for normalization.  

 

The neural network arrangement for resizing and rescaling is shown in Figure 6. 

 

 
 

Figure 6. The resize and rescale process 

 

4. CLASSIFICATION MODEL 
 
We adopt the TensorFlow Keras API for the image classification. The arrangement of layers of 

the Convolutional Neural Networks used for creating the proposed model is described as follows. 

 

4.1. Initial Convolutional Layers 
 

The model's inception involves a convolutional layer that incorporates 32 filters. Each filter is 
configured with a 3x3 kernel and operates with the rectified linear unit (ReLU) activation 

function.It's one of artificial neural networks' most commonly used activation functions, 

especially in deep learning architectures. ReLU is a non-linear activation function that adds non-
linearity to the network, enabling it to learn intricate patterns and representations from the 

input.After each convolution, a max-pooling layer with a 2x2 window size is employed to down-

sample the spatial dimensions of the feature maps. 

 

4.2. Intermediate Convolutional Layers 
 
Following the initial convolutional layer, a second convolutional layer is adopted with 64 filters 

utilizing a 3x3 kernel and ReLU activation. Another max-pooling layer, again with a 2x2 window 

size, is then applied further to reduce the dimensions of the feature maps. A final convolutional 

layer utilizes 64 filters with a 3x3 kernel and ReLU activation before a last pooling operation.  
 

4.3. Flattening and Dense Layers 
 

After the convolutional layers, the resultant feature maps get flattened into a 1D vector. A fully 

connected dense layer comprising 64 units and the ReLU activation function gets utilized to 

capture higher-level patterns and representations.  
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4.4. Output Layer 
 

The model concludes with a dense layer with some units equal to 20 classes. The Softmax 

activation function is employed, which permits the model to yield class probabilities as outputs, 
i.e., it is to produce the final output or predictions of a neural network. We also incorporated 

dense layers to act as intermediate layers to perform feature extraction and transformation.The 

purpose of feature extraction and transformation by the dense layer in the network is to convert 
raw input data into a more meaningful and representative form in the form of reduced dimension. 

In our case, it reduces the data input. The dense layer, therefore, enables our neural network to 

learn and represent relevant information from the input data, facilitating its ability to make 
accurate predictions or classifications. 

 

This proposed architecture, constructed through the Sequential API, is tailored to accommodate 

input data with dimensions of (batch size, image size, image size, and channels). The proposed 
model leverages convolutional layers to extract hierarchical image features and subsequently 

applies fully connected layers to enable accurate classification across multiple classes. In 

addition, to minimize the loss function and enhance the model's performance on the training data, 
three sets of epochs were executed to facilitate the model's training. 

 

It anticipates that this model will significantly contribute to accurately categorizing images by the 

specified research objectives. 
 

5. EVALUATION 
 

A set of quantitative parameters comprising accuracy, precision, recall, and F1-score are utilized 
to gauge how effective the proposed model is. The findings have been presented in Table 2, 

showcasing the highest values of these quantitative metrics achieved up to their corresponding 

epoch numbers. Both tests with four and ten epochs exhibit the same accuracy of 0.93. These 

observations suggest that the model's accuracy stabilizes after four epochs, and additional epochs 
do not substantially improve overall correct predictions on the dataset. 

 
Table 2. Evaluation of parameters 

 

 
 

Figure 7 shows the abovementioned phenomenon, where the model's predictions deviated from 
expected outcomes when tested against datasets. These two parameters significantly contribute to 

the weakness observed in the Prediction and Recall metrics provided by the confusion matrix. 

Hence, the model requires enhancement to attain higher accuracy, a pivotal aspect in determining 
its utility in practical applications and considering Figure 7 when the model created from the 

epoch of four predicted otherwise due to low precision. 
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Figure 7. Incorrect predictions with low confidence percentages 

 

Epoch graphs with accuracy and validation are significantly meant to provide insights into a 

model's training progress and help identify overfitting. With four epochs, the recall is 0.05. That 
means that the model correctly identified only 5% of the positive instances in the dataset as 

positive. With ten epochs, the recall increased to 0.22. That indicates the model now captures a 

large portion of actual positive instances in its predictions. The influences of these instances are 

seen in the figure below, where training and validation struggle to exhibit their dominance in the 
model creation regarding accuracy and loss. Figure 8 depicts the training and validation 

accuracies of the model, which shows that ten epochs properly work when compared to the epoch 

of 4. 
 

 
 

Figure 8. Training and validation accuracies withepoch of 4 and epoch of 10 

 

Considering four epochs in Figure 8, the F1-score is 0.07. The F1-Score is calculated as the 
harmonic mean of precision and recall. It is valuable for evaluating a model's ability to correctly 

classify positive instances while minimizing false positives and false negatives. A low F1 score 

indicates how the model strives to balance false positives and negatives. On the other hand, the 

F1-score has increased to 0.23 with ten epochs. That suggests that the model's precision and 
recall have improved in a way that positively affects the overall balance captured by the F1-score. 

That balance was realized during its test using a dataset, as shown in Figure 9. 
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Figure 9. Correct Prediction vs Wrong Prediction 

 

Figure 9 shows an accurate prediction after the model is provided with a dataset at a confidence 

of 80.82%. The same model made incorrect predictions with a confidence level of 20.88%. When 
supplied with the Mosaic virus and Early blight, the model erroneously predicted health, 

suggesting the need for improvement. Moreover, with an epoch count of 50, the model's overall 

effectiveness improved compared to epochs of 4 and 10. The model trained for 50 epochs 
demonstrated a better capability to capture a more significant portion of actual positive instances 

in its predictions.  

 

While accuracy remains consistent between the 4-epoch and 10-epoch models, the 50-epoch 
model achieves an improved balance between precision and recall. That implies that extended 

training enabled the model to become more accurate, particularly in correctly classifying positive 

instances, resulting in a more balanced and higher-performing model overall. Figure 14 (left side) 
illustrates training visualization at 50 epochs, demonstrating progressive enhancement compared 

to 4 and 10 epochs. On the right side of Figure 10, the model achieves highly accurate predictions 

with confidence levels as high as 99.82% when provided with a test dataset. Nevertheless, the 
model exhibited enormous weaknesses in other predictions, e.g., in Figure 11. 

 

 
 

Figure 10. An accurate Prediction with high confidence 
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Figure 11.An example of incorrect predictions 
 

Table 3. Details of 50 epochs 

 

 
 

Table 3 shows the recorded validation loss value of 1.0999 and a validation accuracy of 0.65, 
providing insights into the model's capacity to generalize its acquired knowledge to previously 

unseen data. The loss value indicates the model's proficiency in minimizing errors during 

validation, while the validation accuracy affirms its ability to sustain high performance beyond 
the training dataset. A relatively elevated count of True Negatives (1391) signifies the model's 

competence in accurately identifying the absence of the target class. Consequently, this 

proficiency also increases the likelihood of generating inaccurate predictions. These metrics 

underscore the positive influence of the model's architecture and training process on its 
performance, thus highlighting its suitability for addressing the research objectives, albeit not at 

an optimal level. 

 

6. CONCLUSION 
 

Contemporary research employs deep learning in image processing and pattern recognition, 

facilitated by the intricacy of its designed neural architectures. These approaches have been 

proven effective in identifying diseases that affect plant leaves. We revealed by our observations 
that splitting and subsequently merging different leaves afflicted by distinct diseases results in a 

complex structure suitable for training through convolutional networks. Augmenting the training 

dataset also enhances the quantity of data available for training, leading to improved model 
performance. Increasing the number of epochs impacts model accuracy. Consequently, an 

efficient model capable of swiftly detecting multiple diseases on a plant leaf gets modeled using 

this concept, demonstrating a confident prediction accuracy of 99.82% for two diseases. 

 
In future research, with our work's objective in mind, we propose creating a more robust model 

for tomato disease prediction. This model should be capable of predicting the number of diseases 

present on an image while assessing their severity in terms of how much affected the leaves are 
using the data fusion method. Additionally, constructing a more robust convolutional neural 

network that can comprehend complex structures such as Disease fusion would be valuable for 

future research, which is pertinent as most studies often involve only a single disease per leaf 
when modeling with CNNs. The employment of a separable convolutional network addition of 
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dropouts with batch transformation could be included in the model to enhance the training phase 
with more profound learning abilities. 
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