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ABSTRACT 
 
This paper concerns unpublished results obtained from the SIMKI (2020) R&D project at the Department 

of Mechanical Engineering at Aalen University of Applied Science, Germany. The following text generally 

discusses the development results of the AI-based CNC parameter identification and optimisation tool 

AICNC. The identification tool supports the AI-based optimisation of milling machine process parameters 

when using unknown material compositions. The process parameters are determined by a specific test 

pattern designed to be automatically analysed in real time by a pre-trained perception-based deep learning 

algorithm. The tool provides the advantage of obtaining real-time quality information due to AI-based 
quality assessment and the automated identification of material-dependent milling process parameter sets, 

even for unknown processing material. 
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1. INTRODUCTION 
 

The manufacturing sector plays an important role in the gross domestic product (GDP) of the 

European Union [1]. Nowadays, companies in the metal processing industry are under constant 

time and cost pressure due to increasing international competition. In addition, documentation 
and environmental requirements are becoming increasingly stringent [2], [3].  

 

 
 

Figure 1. AICNC software module infrastructure overview 
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In particular, the environmental criteria of reducing material waste and energy consumption in 
the production process are a significant factor in ensuring the future viability of industrial 

companies. 

 

In order to increase the efficiency in handling new processing materials with unknown 
mechanical properties, an AI-based CNC parameter optimisation tool (AICNC) has been 

developed within the SIMKI research group at the Department of Mechanical Engineering at 

Aalen University [4], [5]. The software tool uses perception-based deep neural network 
technology based on the SqueezeNet architecture [6].  

 

 
 

Figure 2. Schematic AICNC hardware interfaces and component representation 

 

The tool features a process to automatically predict the necessary CNC milling parameter 
settings, e.g. feed and rotation speed of the milling machine, by analysing predefined test 

patterns. Within the SIMKI research activities, a demonstrator was developed that transfers the 

theoretical results to an automated software tool that is applicable under industrial conditions [7]. 

This results in a simple, low-cost solution that significantly increases the efficiency of CNC 
milling processes and also lowers the environmental impact by reducing material waste. 

 

2. GENERAL ASIC FUNCTIONAL PROPERTIES 
 
Fig. 1 provides a general overview of the AICNC-specific software modules and database 

components. AICNC basically uses an adapted situationally trained deep learning neural network 

[DNN], that is trained by specific test patterns of CNC-Milling sample parts, e.g. circles or 

squares. The DNN is able to identify parts with insufficient surface or edge structures and 
correlates them to the feed and rotation speed settings applied. The user-interface [HMI] provides 

4 general interaction tabs to teach and evaluate the obtained test patterns using the integrated 

DNN. The application includes a semi-automated image acquisition and snipping tool, which is 
used to generate training database images under constant conditions. The pretrained DNN can be 

optimized under use of further images specifically generated within the daily production 

activities. 
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Figure 3. Left: AICNC image acquisition hardware interface setup; right: Test pattern generation on the 

DMU 65 mono Block 5-axis CNC milling machine reference DMU 

 
The HMI interface provides the ability to capture images, train the network, and classify the best 

fitting combinations of feed and rotation speed for the unknown material combinations. The final 

training and pattern assessment results are provided using a layer activation map that indicates 
the correlated training features of the reference images. Additionally, the layer activation map 

representation can also be used for real-time inline quality control by an inline image acquisition 

device. This feature is discussed in further work, e.g. [12], and is not part of this paper. 

 
Table 1. Test pattern milling parameter combination properties of the generic pattern generation for 

adaptive milling parameter identification and adaption, at the DMU65 milling machine. 

 

 
 

Fig. 3 left provides an overview of the actual acquisition infrastructure used during the test 
period. The module consists of a consumer market video capture device with 720p resolution and 

a processing rate of 30 frames per second [fps] as well as a field of view [fov] of 68.5°. The 

hardware is connected to the AICNC software module at a distance of 300mm above the test 
specimen. To minimise environmental effects and ensure optimal pattern recognition, a circular 

illumination system (LED) was installed around the capture area, see Fig. 3 left. Fig. 2 represents 

the corresponding hardware component context and provides an additional overview of the 
communication and energy interface setup used within the experiment. 

 

The project focused on using widely available hardware components and communication 

interfaces to minimise investment and integration costs. In subsequent phases, the illumination 
system can be replaced by software-based compensation for environmental disturbances. 



International Journal on Cybernetics & Informatics (IJCI) Vol.12, No.7, December 2023 

48 

 
 

Figure 4. a,c: AICNC test pattern model; b,d: AICNC manufactured test pattern reference sample probe 

 
Figure 3, right, displays a snapshot of the test pattern generation process using the DMU65 

milling machine. The test pattern consists of 9 separate areas obtained by specific combinations 

of machine-related parameter settings, e.g. feed, cutting, etc. As a reference system, the 5-axis 
CNC machining centre DMU 65 monoBlock was used to apply the procedure under industrial 

conditions [8]. However, the method can be applied to various machines and processes in this 

sector. In order to obtain initial machine parameter settings, a literature source (machining 
manual [9]) was used to specify material dependent initial parameters of the milling machine, e.g. 

cutting speed vc : 210m/min and feed fz : 802,2mm/min. This parameter set can be safely used to 

obtain sufficient results but leaves room for increasing the processing speed according to the 

desired quality criteria. The initial parameter set obtained from literature is used as initial 
machine parameter set and works as a starting point to apply the generic pattern of AICNC. In 

order to identify the parameter set in relation to optimum part quality, the test pattern is applied 

with 8 increasing combinations of cutting speed and milling tool feed. 
 

Table 1 provides an overview of the generic pattern parameter set used in the experiment based 

on the predefined machine setting in order to identify material dependent processing potential. 

The identified potential leads to an increase in processing speed and thus to significant time and 
cost savings compared with the standard parameter settings by manual. 
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Figure 5. AICNC HMI-interface architecture 

 
Fig. 4. provides an exemplary overview of the generated test patterns and the resulting defect 

occurrence according to the machine parameter set of Tab. 1. The pattern layers have a size of 

140x140 mm and a thickness of 5 mm. The type of material used within the development test 
procedures was a rigid Polyvinyl Chloride [PVC] synthetic plastic polymer. The typical material 

parameters are density: 1.3–1.45g/cm3, thermal conductivity: 0.14 to 0.28 W/(mK) and yield 

strength of 1450–3600 MPa [9]. The generic circular patterns were generated with a diameter of 
30 mm and the square patterns with an edge length of 30mm. According to the reference values 

found in the literature, the machine feed can be increased up to step 3 in order to obtain results of 

equivalent quality to step 1, compare Fig. 4 – circular pattern. The same result is obtained for the 

square pattern. According to the square samples in pattern 7, an increased cutting speed also leads 
to adequate quality results.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Left: Generic sample pattern edge and centroid detection result right: AICNC segmented test 

pattern reference sample image 

 

This effect was observed during several test runs. The AI-based parameter prediction tool 
AICNC automatically clusters the results and stores the samples in a data space according to the 

good/bad AI-based assessment result. The algorithm is now able to interpolate and provide a 
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material specific, machine optimised parameter set. Fig 6 represents the pre-processed training 
pattern image files generated from each test run of the milling machine. 

 

3. AICNC USER INTERFACE AND WORKFLOW REPRESENTATION 
 

The AICNC user interface workflow is generally divided into 4 specific task tabs that guides the 
user through the necessary steps. The AICNC application communicates directly with the 

hardware specific image acquisition and clustering methods. Additionally, the DNN represents a 

separate software instance that is connected to the functional interfaces of the AI training and 
assessment tabs, compare Fig. 5. In an initial step, the user connects the desired image / video 

capture device at the 'record' tab. This view allows the user to capture images of the connected 

device. The “clustering” method performs a segmentation process that includes subroutines for 

image scaling, edge detection and centroid detection. The captured images of the generic sample 
patterns are counted according to the centroids found by the algorithm. After the segmentation is 

finished, the sliced patterns are stored in a common folder. Specific working folders can be 

selected in the 'working folder' tab. The specified working folder contains the raw image data and 
the segmented training images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. “Record” tab UX-representation 

 
The 'parameter prediction' tab is mainly a user interface that supports the manual classification 

process of the captured training images. The captured and segmented sample patterns are loaded 

and analysed by the user. The i.O. and n.i.O button save them to the appropriate DNN training 

folders. Finally, the “AI-training” tab uses database images to train predefined material patterns. 
To increase the accuracy, different material types can be used in the DNN pre-training process. 

The trained DNN on the one hand provides a feedback value as to whether the assessed samples 

fit the i.O. or the n.i.O. criteria, and on the other hand additionally creates an image of the heat 
activation layer that marks the important features of the generic sample pattern. The activation 

map (heat activation layer) is correlated with the backward mapping where the important image 

features of the damaged parts can be found. 

 
Figure 7 represents the user view in the 'record' tab. Correctly captured and segmented images are 

indicated by a green-light feedback. Additionally, a continuous system log will be created to 

validate the user-feedback over time. This is important to correlate differences in the detection 
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accuracy according to the DNN training process. Fig. 8 represents the AICNC training and 
assessment tab. This tab provides access to software methods for the DNN training procedure. 

Once the training process is complete, the system is compatible with a wide range of video 

capture devices. The assessment button segments the latest captured image and generates a 

confidential value indicating whether the captured image is i.O. (good) or n.i.O (defective). 
Additionally, the activation layer display indicates the area and impact of defects according to the 

intensity colour overlay provided by the user interface. 

 

 
 

Figure 8. Representation of the AICNC Teaching and Assessment tab 

 

4. DNN TRAINING ENVIRONMENT AND RESULT VALIDATION 
 

The DNN training procedure was performed with 30 ’good’ rated and 43 ’defective’ rated 

images. With 75 training iterations and 150 training epochs. The training PC includes a Core i5-
7600K processor with 3.79 GHz clock rate and 16 GB RAM. The operating system based on 

WIN 10 Pro. The training was performed on a single CPU at a time period of 4:22 minutes to 

reach a validation accuracy of 100%. The DNN structure is based on the ’SqueezeNet’ 
architecture with exchanged input layers. SqueezeNet is a deep neural network architecture 

originally developed to reduce the number of parameters and memory size compared to other 

neural networks, see Tab 2. This architecture consists of several Convolutional Layers, Max 

Pooling Layers, Fire Layers, a global average Layer, a Fully Connected Layer and an Output 
Layer. 

 

The input layer supports images as input with resolution of 227x227 and three colour channels, 
i.e. for RGB images. The image is then convolved with a Convolutional Layer with 64 kernels  

with the dimensions 3x3. Behind the Convolutional Layers there is a ReLU-activation function 

and then the output matrices are passed in a max-pooling layer. After that there are 8 so-called 
Fire Modules. Each of these fire modules consists of a squeeze layer, an expand layer with a filter 

dimension of 1x1 and an expand layer with a filter dimension of 3x3. The squeeze process 

consists of a single convolution layer that reduces the number of input channels to a smaller 

value. This reduces the dimensionality of the input and allows for more efficient processing. The 
expand process consists of a combination of 1x1 convolution layers and 3x3 convolution layers 
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that increase the number of channels to a higher level. This combination allows complex features 
to be captured without requiring too many parameters. 

 

 
 

Figure 9. Architecture of the Adapted Fire Module [10] 

 
After these fire modules follows another Convolutional Layer and a ReLU activation function, 

compare Fig. 9. This is followed by a Global Average Pooling Layer. A fully connected layer 

was added to the network structure. This consists of two layers, which reduces 1000 parameters 

to two parameters. From these parameters, the probabilities for the classes "good" and "defective" 
can be calculated with the help of the Softmax function [10]. 

 
Table 2. Architecture of the adapted SqueezeNet DNN [10] 

 

No. Layer Description 

1 Input Layer 

2 Convolutional Layer 

3 ReLU-Activation-Function 

4 Max-Pooling 

5 Fire Module 1 

6 Fire Module 2 

7 Max-Pooling 

8 Fire Module 3 

9 Fire Module 4 

10 Max-Pooling 

11 Fire Module 5 

12 Fire Module 6 

13 Fire Module 7 

14 Fire Module 8 

15 50% Dropout 

16 Convolutional Layer 

17 ReLU-Activation- Function 
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18 Global-Average-Pooling 

19 Fully-Connected-Layer 

20 Softmax Function 

 

In the presented use case, an ADAM-optimization function was used to optimize the learnable 
weights and bias parameters. ADAM-Optimiser is an optimisation algorithm for the gradient 

descent method. ADAM is a further development of the RMSProb and AdaGrad optimizers. 

However, ADAM also incorporates momentum to improve convergence speed. After calculating 

the gradient 𝑔𝑡 , the moving average of the first and second moments of the gradients is 

calculated: 

 

𝑚𝑡 = ß1 ∗ 𝑚𝑡−1 + (1 − ß1) ∗ 𝑔𝑡                  (1.1) 

𝑣𝑡 = ß2 ∗ 𝑣𝑡−1 + (1 − ß2) ∗ 𝑔𝑡
2                  (1.2) 

 

ß1 and ß2 are the decay factors for the moving average. The default values are used for ß1=0.9 

and ß2=0.999. Subsequently, this is used to calculate the bias-corrected first moment estimate: 

 

�̂�𝑡 =
𝑚𝑡

1 − ß1
𝑡              (1.3) 

�̂�𝑡 =
𝑣𝑡

1 − ß2
𝑡

(1.4) 

 

The updated parameters can now be calculated based on the following formula: 

 

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑚𝑡

√𝑣𝑡+∈
(1.5) 

 

𝜃𝑡  is the updated vector of parameters at time t. 𝛼 corresponds to a fixed step size and ∈ is a 
small value added to stability to avoid dividing by zero. The parameter update is divided by the 

adaptive learning rate using the corrected moment estimator and the square root of the corrected 

second moment estimator. Our SqueezeNet was trained with a step size 𝛼 of 0.0001. In addition, 
a learning rate schedule of an Drop factor of 0.7 every 10 epochs was added. An epsilon of 1e-8 

was used [11]. The results of the DNN assessment are combined in the ’myNDNet-Postprocess’ 

algorithm and superimposed on the corresponding pattern image. The superimposing process 

allows one to evaluate the results and identify spots with minor quality. The information is 
displayed to the user in a separate window, compare Fig. 8. A blue coloration visualizes a good 

part. The change of colour from green to yellow to red symbolises the increasing degree of 

damage. Red areas thus indicate defects on the workpiece. 
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Figure 10. DNN test pattern training progress and resulting defective test pattern layer activation map 

 

This function provides also the possibility to present and compare an image to a previously 
trained DNN classification result. Thus, the teaching process does not need to be repeated, and 

validation of the results can be assessed in minimum time. As mentioned, Fig. 8 - right represents 

the resulting DNN pre-processed test-patterns. At the left area, the acquired sample pattern is 

visible at the right the originated pattern file. The centre view represents the image processed by 
the ’myNDNet-Preprocess’ function, displayed in the centre view. The third graphic on the right 

hand, contains related user feedback of the AI classification result. It indicates whether the 

submitted milling workpiece is i.O. or n.i.O. In addition, the recursive activation layer image 
colours defective areas identified by the DNN. The dark red area of the activation layer image 

marks the defective part area. The visualisation of size and position of part defectives supports 

fast track decision support, whether the part can be reworked or not. 

 

 
 

Figure 11. DNN training procedure; left: Milled sample pattern sheet; right: perception based real-time AI 

defect marking by recursive representation of the DNN layer activation 

 

5. AICNC DNN ASSESSMENT WORK-FLOW 

 
The AICNC work-flow is divided into two separate processes. Initially, the DNN training 

procedure has to be performed. The training procedure during the development system tests is 

semi-automatised. The acquired test pattern is automatically cut into partial patterns that fits the 
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demand of the DNN input network layer, compare Fig. 9. The network structure is divided into 
the input layer, a hidden layer, and a fully connected layer. Finally, the class output is generated. 

The application of the used DNN originally targets object recognition tasks. Fig. 6 left displays 

the reference pattern cuttings, including fully automatised centroid identification. The centroid 

identification algorithm automatically detects the weighted pattern centre based on the results of 
the canny edge detector algorithm, compare [12]. Fig. 6 right displays the corresponding pattern 

cutting images automatically stored in the training folder by AICNC. The training images are 

named with increasing numbers. The training process demands a cluster of good and a cluster of 
defective images.With increasing number of training-images, the reliability of the DNN 

assessment results can be increased within the application of the tool within process usage. Fig 11 

. displays the real-time-visualisation overlay of the camera-based perception user-interface.  
According to testing purposes, the trained DNN was additionally implemented in a consumer-

market web-cam device. 

 

At least 9 individual test patterns were needed within the experiment, in order to obtain an initial 
indication of the desired machine parameter settings. Fig. 11 - left, displays the milled test pattern 

(camera view) and Fig. 11 - right, represents the real-time camera view including activation map 

overlay. The camera is generating real-time class-activation map overlay (heat activation layer) 
with approx. 15-20 fps and indicates under use of phased coloured fields, the occurring extends 

of part defectives. Areas with high amount of edge and surface defects are marked with a dark 

red colour and indicate the degree of activation of the DNN layer according to the required 
features of the part.  

 

 
 

Figure 12. AICNC – DNN layer structure, compare [5] 

 
At this state, the final system is able to provide reliable user-feedback that indicates which areas 

may provide the optimal milling parameter set. The second column indicates that areas occur 

with insufficient activation of neurones. This leads to the demand to further harden the DNN with 
extended training data. Tab. 3 displays the assessed i.O. and n.i.O. sample parts. With the initial 

samples of 20 patterns a validation accuracy of 100% was reached. Nevertheless, not every 

sample-pattern was classified correctly. Thus, further experiments must validate the usability of 

the system. Additionally, an increased database, generated within the industrial system-usage, 
will help to overcome classification problems. Additionally different DNN-structures will be 

tested to increase the testing accuracy. 
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6. CONCLUSIONS AND DISCUSSION 

 
To validate the success of the DNN training at the initial training status, a random seed of 20 

images of the category ’defective’ was represented and assessed. At the current stage, the AICNC 

has been initially trained using a small number of test patterns.  

 
Table 3. Initial results of AICNC performance validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The test results from the perception-based real-time capturing device provide sufficient results to 

support milling parameter identification under industrial conditions. In future development steps, 

the AICNC will be trained under industrial conditions with an extended database. Furthermore, 
the network structure will be replaced by the VGG-19 [13], a more specialised DNN structure. 

This network uses 19 layers and is also mainly used for object recognition.  Internal tests have 

already shown better results. That means that key users will use the software in customer 

projects. 
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