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ABSTRACT 
 
Speech technology is a field that encompasses various techniques and tools used to enable 

machines to interact with speech, such as automatic speech recognition (ASR), spoken 

dialog systems, and others, allowing a device to capture spoken words through a 

microphone from a human speaker. End-to-end approaches such as Connectionist 

Temporal Classification (CTC) and attention-based methods are the most used for the 

development of ASR systems.  However, these techniques were commonly used for research 

and development for many high-resourced languages with large amounts of speech data for 

training and evaluation, leaving low-resource languages relatively underdeveloped. While 

the CTC method has been successfully used for other languages, its effectiveness for the 

Sepedi language remains uncertain. In this study, we present the evaluation of the Sepedi-

English code-switched automatic speech recognition system. This end-to-end system was 

developed using the Sepedi Prompted Code Switching corpus and the CTC approach. The 

performance of the system was evaluated using both the NCHLT Sepedi test corpus and the 

Sepedi Prompted Code Switching corpus. The model produced the lowest WER of 41.9%, 

however, the model faced challenges in recognizing the Sepedi only text. 

 

KEYWORDS 
 
Automatic Speech Recognition, Sepedi-English, Code-switching & Connectionist Temporal 

Classification 

 

1. INTRODUCTION 
 

For more than five decades, there has been consistent research activity in the field of Automatic 

Speech Recognition (ASR). ASR, a pivotal technology, plays an important role in enhancing both 

human-to-human and human-computer interactions [1]. Throughout its history, ASR has 

consistently propelled the advancement of numerous machine learning (ML) approaches. This 

includes widely employed methodologies like hidden Markov models, discriminative learning, 

structured sequence learning, Bayesian learning, and adaptive learning. Furthermore, ASR 

frequently serves as a substantial and real-world application for speech technology, thoroughly 

examining the efficacy of specific techniques and inspiring novel challenges that stem from the 

intricate sequential and dynamic characteristics inherent to speech [2]. 

 

https://airccse.org/journal/ijci/Current2024.html
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Speech recognition technology, as defined by [3], empowers devices to capture spoken words 

from human speakers using microphones. The realm of speech recognition has witnessed swift 

advancement in recent years and this momentum continues to build. This technology extends 

beyond various domains, presenting an array of potential benefits. It finds application in diverse 

areas, including virtual assistants, automated chatbots, as well as automated transcription and 

closed captioning for videos [3]. Speech technology encompasses a range of techniques and tools 

that facilitate machine interaction with other entities through speech. 

 

In recent times, Connectionist Temporal Classification (CTC) has gained significant 

acknowledgment for its potential to enhance the performance of ASR systems, even in scenarios 

with limited resources [4]. Various strategies for integrating CTC into ASR models have been put 

forward in scholarly works. An example of such a strategy involves the incorporation of CTC 

into the non-autoregressive transformer model with an enhanced decoder input. This method 

refines the output of a CTC-based model, thereby enhancing the precision of its results [5]. 

 

The CTC approach, introduced in [6], empowers deep learning techniques, including 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), to play more 

substantial roles in the field of ASR. In contrast to traditional models that often-output phonemes 

or other smaller units, CTC directly produces the final target form without requiring additional 

processing. This streamlined approach simplifies the development and training of end-to-end 

models, as discussed in [7]. Consequently, it facilitates the creation of a unified network 

architecture that effortlessly maps input sequences to corresponding label sequences, thereby 

promoting the advancement of end-to-end speech recognition. 

 

The CTC approach leverages RNNs for sequence labeling tasks where the alignment between 

input sequences and target labels remains unknown, as high-lighted in [8]. This innovative CTC 

objective enables the training of end-to-end systems that directly predict grapheme sequences 

without the need for frame-level alignments of target labels during training. In addition to its 

simplicity and efficiency, the incorporation of the intermediate CTC loss acts as a regularization 

technique during training, enhancing performance with minimal code modifications required, as 

detailed in [9]. Furthermore, CTC imposes minimal overhead during both the training and 

inference processes, making it a practical choice for ASR systems. 

 

Modipa et al. highlights that a majority of ASR systems heavily rely on transcribed speech data 

accumulated over an extended period [10]. This data collection aids in establishing statistical 

associations between sounds in a specific language and learning the underlying patterns. 

Moreover, it is explained that the Sepedi language encompasses roughly 32 phonemes, while 

English comprises around 44 phonemes. A phoneme serves as a fundamental unit of sound [11]. 

As a result, the limited phonemic inventory in Sepedi classifies it as a low-resourced language. 

Akin to Sepedi, Nguni languages including isiNdebele, isiXhosa, isiZulu, siSwati, as well as the 

Sotho-Tswana languages, fall under the category of low-resource languages [12]. These 

languages suffer from various challenges, including limited research attention, scant resources, 

inadequate digitization, fewer privileges, reduced prevalence in education, or low population 

density [13], all of which render them relatively underdeveloped compared to languages like 

English. 

 

This scarcity of resources presents a significant hurdle in developing accurate ASR systems. 

Biswas [14] points out that the complexity arising from code-switching poses challenges in 

model integration due to its intricate nature. This becomes particularly formidable when dealing 

with under-resourced languages, where constraints on textual and acoustic datasets severely 

constrain modeling capabilities. Thus, our objective is to construct a code-switched language 

ASR system utilizing an end-to-end methodology, such as the CTC approach. We will utilize this 



International Journal on Cybernetics & Informatics (IJCI) Vol.13, No.2, April 2024 

35 

framework to assess ASR performance in code-switched languages, employing two distinct sets 

of testing data. By training on a diverse multilingual corpus, our system strives to attain high 

accuracy in recognizing speech within code-switched contexts. We expect that this approach will 

outperform existing methods in the field of code-switched language recognition, yielding 

superior ASR results. 

 

This research represents a significant step forward in ASR technology, specifically addressing the 

complexities of code-switching in under-resourced languages like Sepedi. By developing an 

efficient and accurate code-switching ASR system, we will contribute to the advancement of 

speech recognition technology, which has several potential applications in areas such as language 

learning, speech-to-text transcription, and voice-controlled devices. 

 

In real-world scenarios, particularly in multilingual societies characterized by the prevalent 

practice of code-switching. It finds practical utility in the context of technologies such as Siri and 

Google Assistance, which rely on voice interactions and the English language. Given that 

Africans often incorporate borrowed words from various languages into their speech, our 

research has the potential to enhance the adaptability and effectiveness of voice-based systems in 

these linguistic environments. 

 

This study aims to evaluate the impact of varying the number of filters on the modeling of code-

switched speech within Automatic Speech Recognition (ASR) systems. The use of different filter 

numbers plays a crucial role in shaping the model’s ability to capture relevant features, patterns, 

and nuances present in code-switched speech. The number of filters directly affects the model’s 

capacity to discern complex patterns in speech data. By systematically varying the number of 

filters, this study seeks to uncover the optimal configuration that results in improved accuracy 

and generalization for transcribing spoken language, particularly in the context of code-

switching. The findings aim to provide insights into the refined relationship between filter 

numbers and the effectiveness of ASR models in handling code-switched speech scenarios. The 

paper is outlined as follows: Section 2 provides the background of the CTC approach for the 

development of ASR systems. Section 3 discusses the approach used to develop the Sepedi-

English end-to-end system. Section 4 discusses the results obtained. The paper is concluded with 

Section 5. 

 

2. BACKGROUND 
 

In recent years, there has been substantial research and progress in the realm of speech 

recognition technology, as highlighted in [15]. These advancements have led to increased 

accuracy and efficiency in ASR systems, owing to developments in machine learning, natural 

language processing, and deep learning [16]. In the context of code-switched South African 

speech with limited resources, [17] described the utilization of a hybrid acoustic and language 

model training technique to enhance ASR accuracy. Additionally, the importance of the Markov 

assumption in facilitating rapid and parallelized decoding of ASR systems was elucidated in [9]. 

This assumption empowers the model to compute the probability of the entire output sequence 

based on the input sequence in a single forward pass, eliminating the need for explicit alignment 

between input and output sequences. 

 

It has been shown that ASR models utilizing the CTC approach exhibit impressive performance, 

especially when fine-tuned from wav2vec models, as discussed in [18]. To further improve CTC-

based models, researchers have devised two knowledge transfer techniques: representation 

learning and joint classification learning. These techniques incorporate contextual knowledge 

from pre-trained language models into ASR systems. Additionally, Lee et al. [9] presents a 

straightforward yet highly effective auxiliary loss function for ASR based on the CTC objective. 
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End-to-end models, like CTC, are the predominant choice in the field of ASR. CTC efficiently 

handles sequential tasks through dynamic programming and effectively leverages Markov 

assumptions. An alternative approach to aligning acoustic frames with recognized symbols is 

through the use of an attention mechanism [19]. According to Emiru et al. [20], attention 

networks offer a promising alternative to recurrent neural networks in end-to-end ASR, showing 

strong performance. However, it’s worth noting that while attention-based models can achieve 

state-of-the-art results in ASR, they tend to be more intricate and computationally intensive 

compared to CTC-based models. 

 

While CTC is a commonly used method for ASR in various languages, the primary focus of 

research and development has largely concentrated on languages with ample speech data 

available for training and evaluation, as elucidated in [21]. Consequently, assessing the system’s 

performance and scrutinizing the outcomes can offer valuable insights into the effectiveness of 

CTC for ASR in low-resource languages, while also pinpointing areas for enhancing the Sepedi 

ASR algorithm. 

 

There is a clear need for further research and development to enhance CTC’s performance in 

low-resource language settings. Moreover, the collection and annotation of speech datasets are 

imperative to construct a more extensive training 

corpus. 

 

The Transformers library, introduced by Wolf in 2020, provides support for Transformer 

architectures and streamlines the distribution of pretrained models [22]. Vaswani et al. [23] 

introduced the Transformer model in their pioneering work on neural machine translation, 

wherein an encoder-decoder structure relies solely on attention mechanisms. The Transformer 

model employs self-attention, in conjunction with other layers within its encoder module, to 

compute features for word embeddings, harnessing the capabilities of self-attention effectively, as 

discussed in [24]. Demonstrated findings highlight the remarkable proficiency of transformer-

based models in capturing intricate sequential patterns, as evidenced in the studies by [25] and 

[26]. 

 

 Transformers, a deep-learning architecture [23] utilize attention-based mechanisms to process 

sequences. These models employ self-attention modules, allowing them to integrate information 

from various elements within a sequence during the update process. In contrast to earlier deep-

learning methods, transformers exhibit exceptional proficiency in capturing comprehensive 

dependencies between input and output sequences via attention mechanisms [27]. This enhanced 

capability translates to improved performance across a wide spectrum of tasks, spanning from 

natural language processing to computer vision applications. Consequently, transformers have 

emerged as the preferred architecture for numerous deep learning applications. 

 

The Listen, Attend, and Spell (LAS) model presented by [28] is a neural network designed to 

convert spoken speech into written characters. This model effectively learns all the integral parts 

of a speech recognition system in a unified manner. The system is comprised of two main 

components: a listener and a speller. The listener functions as a pyramidal recurrent network 

encoder, capable of processing filter bank spectra as its inputs. On the other hand, the speller 

operates as an attention-based recurrent network decoder, generating character outputs. Notably, 

this network generates sequences of characters without relying on any presumptions of 

independence between them. Chen [29] state that while this approach simplifies the training and 

decoding processes, it becomes challenging for a unified model to adapt when discrepancies exist 

between the training and testing data, particularly in cases where this information undergoes 

dynamic changes. 
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3. METHODOLOGY 
 

3.1. Code-Switched Speech Corpus  
 

In this research work, we are using the Sepedi Prompted Code Switching (SPCS) corpus [30]and 

the NCHLT Sepedi corpus. The SPCS corpus is a collection of spoken language data that has 

been compiled and annotated for linguistic research purposes. The corpus contains recordings of 

speech from a diverse group of Sepedi speakers aged between 17 and 27 years old. The dataset 

utilized for SPCS Sepedi was created by capturing spoken expressions from 8 males and 6 

females, resulting in a total of 9183 audio files. The SPCS corpus is partitioned into three subsets: 

74,6% is allocated for training, 12,4% for validation, and 13.0% for testing purposes. 

 

Table 1 illustrates the allocation of utterances across three distinct sets: training, validation, and 

testing. 

 
Table 1. The number of utterances of the SPCS corpus. 

 
Set Number of utterances 

Training 6854 

Validation 1136 

Testing 1193 

 

The NCHLT Sepedi corpus NCHLT Sepedi corpus is primarily composed of speech that is initiated 

through prompts in the Sepedi language. However, it also incorporates instances of English 

speech, resulting in a code-switched corpus. For our analysis, we focused exclusively on the 

testing data within the NCHLT corpus, featuring a total of 8 speakers, evenly divided between 4 

females and 4 males. We use the testing data extracted from the NCHLT corpus with the testing 

data obtained from the SPCS corpus, which comprises four speakers, consisting of two females 

and two males. The distribution of the test data in Table 2 below. 

 
Table 2. Distribution of test data by gender. 

 
Test data SPCS speakers NCHLT speakers 

Female 2 4 

Male 2 4 

 

During the testing phase, we utilized the NCHLT dataset alongside the SPCS corpus to evaluate 

the model’s performance. This approach allowed us to comprehensively assess the model’s 

capabilities across a range of diverse datasets. The number of utterances in the test data, 

categorized by gender, can be observed in Table 3 below.  

 
Table 2. Distribution of test data by gender. 

 
Test data Number of SPCS utterances Number of NCHLT utterances 

Female 662 1382 

Male 531 1447 

Total 1193 2829 

 

 

 

 

 

https://repo.sadilar.org/handle/20.500.12185/530?show=full#:~:text=2c2b367ba1811e4024b52b95bf85acf8-,Download,-This%20item%20appears
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3.2. System Development Process 
 

Through a series of sequential actions, we have developed an ASR system utilizing the CTC 

approach. This progression encompasses several key stages, namely pre-processing, dataset 

creation, model construction, training, and evaluation. A concise overview of each of these stages 

follows. 

 

In the initial step, we initiate the process by installing essential Python libraries and modules that 

are indispensable for the development of the ASR system. This encompasses the incorporation of 

deep learning frameworks like TensorFlow and Keras. In the pre-processing phase, we begin by 

specifying the set of characters considered valid within the transcriptions. The resultant character 

set is then stored within a variable. We proceed to define two Keras layers tasked with facilitating 

the mapping between characters and integers. The first layer is responsible for translating 

characters into integers. It utilizes the provided vocabulary argument, which is configured to 

encompass the pre-defined characters. Any values encountered in the input that are outside this 

predefined vocabulary are mapped to an empty string. Conversely, the second layer serves as the 

counterpart, responsible for mapping integers back to their corresponding characters. It leverages 

the same vocabulary information to perform this mapping operation. 

 

We have established three distinct datasets for the purposes of training, validation, and testing. 

The testing dataset comprises samples from two separate corpora. To process each encoded 

sample within the dataset, we employ the map method. This function undertakes tasks such as 

reading audio files, computing spectrograms, normalizing data, and mapping transcriptions into 

sequences of integers. To maintain uniform shapes across batches, we apply batching to the 

dataset, while simultaneously utilizing the pre-fetch method to overlap the pre-processing and 

training phases. Similarly, the test dataset is constructed, but it employs the test file names and 

associated transcriptions. This dataset serves the purpose of evaluating the model’s performance 

on a distinct set of data during the training process. 

 

The model configuration followed the end-to-end approach [19]. It embraced a multi-layer 

architecture, encompassing three RNN layers with 256 units. RNN units in ASR allows the 

model to analyze and understand sequential data, making them well-suited for converting spoken 

language into written text. The convolutional aspect involved two 2D CNN layers equipped with 

16 filters. The GRU component was characterized by a tanH activation function and a dropout 

rate of 0.3. The classification layer employed the softmax activation function with a learning rate 

of 1e-3. We examined the impact of different filter quantities on the convolutional layers to 

evaluate their influence on recognition accuracy. Specifically, we employed 16, 32, and 64 filters 

in the study. The number of filters is a hyperparameter that influences the model's capacity to 

learn and generalize from acoustic features in audio signals. It is often tuned based on the specific 

characteristics of the dataset. In terms of decoding strategy, a greedy decoding approach was 

employed, while evaluation employed the CTCLoss function. 

 

Throughout the training process, the neural network receives batches of speech recordings along 

with their corresponding transcriptions. The network’s objective is to discern the inherent 

patterns within the data and adjust its parameters to minimize the disparity between predicted and 

actual transcriptions. This optimization is achieved through back-propagation, wherein the model 

calculates the gradient of the loss function with respect to its parameters and then employs this 

gradient to adjust the network’s weights. This iterative cycle of data ingestion, loss computation, 

and parameter updating persists for a predetermined number of epochs, typically until the model 

reaches convergence or the allotted training time expires. In the context of this study, we utilized 

150 epochs for training. 
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3.3. Evaluation 
 

Throughout the evaluation process, a callback function is invoked after each epoch, serving the 

purpose of computing the Word Error Rate (WER) and showcasing a subset of transcriptions 

from the validation set. This approach provides us with a means to continually assess the model’s 

performance using data that remained unseen during training, allowing for necessary adjustments 

to the model or hyperparameters. We further evaluate the model’s behavior by subjecting it to 

data from two distinct corpora. 

 

In the model.fit function, the validation data argument designates the dataset used for evaluation 

during the training process. To clarify, the WER as shown in Eq. (1) quantifies the accuracy of 

transcriptions, measuring the disparity between predicted words and the actual reference words 

[31]. 

 

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 × 100                                (1) 

 

where S is the number of substitutions, D is the number of deletions, I is the number of insertions, 

C is the number of correct words, N is the number of words in the reference (N = S + D + C). To 

calculate the CTC loss the function is as expressed in Eq. (2): 

 

𝑃𝐶𝑇𝐶(𝑌|𝑋) = ∑ ∏ 𝑃(𝑎𝑡|ℎ𝑡)               (2)

𝑇

𝑡−1𝐴𝜖𝐵−1(𝑌)

 

 

for a given input pair (X, Y), we must consider all potential alignments that could result in the 

output sequence Y. We then sum the probabilities of generating each label at each time step, 

taking into account the corresponding hidden state of the model, as described in [31]. 

 

For every alignment A, we compute the conditional probability of producing each label at each 

time step, denoted as P(𝑎𝑡|ℎ𝑡). In this context, the output sequence Y is represented as a sequence 

of labels, such as characters or phonemes, with its length indicated as T. The input sequence X 

represents the input to the model. A valid alignment A serves as a mapping between the input 

sequence X and the output sequence Y, while ∑ 𝐵−1(𝑌) refers to the set of all valid alignments 

that result in the output sequence Y. By summing the probabilities of generating each label at 

each time step for all potential alignments, we can determine the CTC loss function. 

 

4. RESULTS AND DISCUSSION 
 

In this study, we examined the performance of the ASR model utilizing the CTC approach while 

altering the number of filters. Two figures, namely Figure 1 and Figure 2, provide a concise 

summary of the outcomes from this experimentation. 

 

Figure 1 below illustrates the loss across 100 epochs for both training and validation sets. The 

validation loss pertains to measurements taken on the validation dataset, whereas the training loss 

corresponds to measurements on the training dataset. The validation loss is a crucial metric that 

indicates how well the model generalizes to unseen data. Interestingly, the loss shows a 

decreasing tendency as the number of steps increases, though with occasional fluctuations 

indicated by spikes. Using 16 filters results in the lowest validation loss with the value 21.96. 

This suggests that 16 filters work well to improve generality by avoiding overfitting. The loss 

rises to 22.24 for 32 filters, and to 22.82 for 64 filters respectively. 
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Fig. 1. Validation and training loss by epochs 

 

The findings suggest that, for the given model architecture and dataset, 16 filters strike a good 

balance between learning from the training data and generalizing to unseen data. Increasing the 

number of filters to 32 and 64 results in higher validation losses which indicates diminishing 

returns and potential overfitting. These results emphasize the importance of careful tuning the 

number of filters, to achieve optimal model performance and prevent overfitting. However, the 

spikes in the validation loss indicate that the model has difficulty in generalizing to new unseen 

data at certain epochs, especially with 64 filters, though the smooth training loss plot shows that 

the model fits the training data well. Additionally, it is noteworthy that for both 16 filters and 32 

filter, the validation error exceeds the training error after 10 epochs. For the 64 filter, this 

deviation appears after 23 periods, which may indicate the beginning of overfitting. 

 

Figure 2 illustrates the Word Error Rate (WER) across different number of filters during the 

validation phase using the SPCS corpus. The minimum WER is achieved when 16 filters are 

used, registering at 41.9%. In contrast, when 32 filter are used the WER slightly increased to a 

WER of 43.48%, and when the 64 filters are used there is a notably elevated WER of 47.47%. 

 

 
 

Fig. 2. WER by epochs 
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The model’s performance was best when employing 16 filters, which indicated that for this 

dataset, a smaller number of filters in the convolutional layers was advantageous. This 

configuration effectively captured relevant features and patterns in the data. However, as the 

number  of filters increased to 32, a slight rise in WER was observed. This suggests that the 

model, with increased complexity, started capturing more intricate patterns that did not generalize 

well to the test set. Furthermore, with 64 filters, the WER notably elevated, indicating that the 

model had become overly complex, potentially overfitting to the training data and failing to 

generalize effectively to unseen data. This is because limited training data lead to difficulties in 

generalizing the unseen data. 

 

When evaluating the SPCS dataset, which serves as the foundation for training, validation, and 

testing within the study. When subjecting the model to testing using unseen data from the same 

corpus, the Word Error Rate (WER) exhibits varying results. With 16 filters, the WER is 

measured at 50.05%, while 32 filters yield a slightly lower WER of 50.24%. Furthermore, 

employing 64 filters results in a higher WER of 53.51%. When conducting testing with the 

NCHLT corpus, the smallest WER is 84.59% with 16 filters, followed by 85.06% with 32 filters 

and 89.89% with 64 filters. These findings underscore the importance of carefully selecting an 

appropriate number of filters in the model architecture, as the choice significantly influences the 

model’s performance on different corpora. The system lacks training on a varied and 

representative dataset for the Sepedi NCHLT test corpus, resulting in less favorable outcomes. 

Hence the NCHLT text corpus encompasses a distinct context compared to the training data, 

contributing to the observed performance differences. The results make it evident that it is 

challenging for the model to adapt. 

 

In the study cited as [32], a Word Error Rate (WER) of 55.38% was reported for the testing data 

involving code-switched Chinese and English. This value exceeds our model's WER by 5.33%, 

underscoring the superior performance of our model in handling code-switched data, even with a 

smaller dataset. 

 

Below are the outcomes generated by the model during the testing phase, as demonstrated for 

both the SPCS and the NCHLT corpus shown in Table 4. The model exhibited a higher degree of 

accuracy in recognizing the words within the SPCS corpus compared to those within the NCHLT 

corpus. 

 
Table 4. The target and predicted transcription for SPCS and NCHLT test corpus. 

 
SPCS test corpus Target: ba re romele di form 

Prediction: ba e romela di form 

Target: disturba o sa re wa 

Prediction: disturba o sa re wa 

NCHLT test corpus Target: ke sa le ka go 

Prediction: ke sa leta go 

Target: ya ba semak age go 

Prediction: ya ba semaka agego 

 

The model exhibits proficiency in accurately predicting the initial and concluding words of a 

given text. Additionally, it demonstrates a high degree of accuracy in forecasting the majority of 

English sentences. Notably, its performance in predicting longer sentences (consisting of five 

words) surpasses its accuracy in predicting shorter ones. 
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5. CONCLUSION 
 

This paper presents our efforts in determining the word error rate in speech recognition while 

varying the number of filters. We conducted experiments using diverse testing datasets sourced 

from different corpora. The results of our experiments reveal a crucial insight into the selection of 

the number of filters for optimal model performance. The results demonstrate that the number of 

filters in a convolutional layer affects the capacity of the network to capture different features in 

the input data. The extremely high number of filters can have detrimental effects on the model’s 

ability to accurately recognize speech. This emphasizes the significance of achieving a balance in 

the quantity of filters employed, as excessively high values could result in overfitting, leading to 

suboptimal performance of the model when exposed to new or varied data. 

 

The Sepedi NCHLT test corpus encapsulated a distinct context in contrast to the training data, 

posing a challenge for the system to adjust. ASR systems typically exhibit improved performance 

when the training and testing data closely align in terms of domain and context.  

 

The inclusion of code-switching, where multiple languages are alternated within a conversation, 

can introduce complexity to ASR systems. If the Sepedi NCHLT test corpus involves complex 

code-switching patterns than the training data, the system will encounter difficulties accurately 

recognizing the speech. 

 

Future research directions should include extensive data analysis and experimentation on the 

Sepedi language, as well as exploration into other under-resourced languages to assess the 

model’s generalizability. Furthermore, the results obtained in this research can act as a 

fundamental benchmark for upcoming initiatives dedicated to the creation of code-switched 

Automatic Speech Recognition (ASR) systems for languages that lack adequate resources. These 

languages face the challenge of limited available data, which is pivotal for training and advancing 

various language technology systems. 
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