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ABSTRACT 
 
This paper introduces a density-based clustering procedure for datasets with variables of 

mixed type. The proposed procedure, which is closely related to the concept of shared 

neighbourhoods,  works particularly well in cases where the individual clusters differ 

greatly in terms of the average pairwise distance of the associated objects. Using a number 
of concrete examples, it is shown that the proposed clustering algorithm succeeds in 

allowing the identification of subgroups of objects with statistically significant 

distributional characteristics. 
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1. INTRODUCTION 
 
In the field of applied statistics, “clustering” and “cluster analysis” are collective terms for all 

procedures by which individual objects can be aggregated into groups of mutually similar 

entities.  
 

One set of methods frequently used to perform this task, commonly referred to as centroid-based 

approaches, model a cluster as a group of entities scattered around a common central point. 

However, this may be counter-intuitive since many observers would also tend to group entities 
together if they are scattered along a common, not necessarily linear path or surface, rather than a 

common central point.  

 
In response to this challenge, another class of clustering methods, often summarized under the 

general term of “connectivity-“ or “density-based” approaches (Kriegel et al. [13]), has been 

developed. In this context, clusters are defined as groups of entities located in regions of high 
density and separated by near-empty areas within the sample space. Widely used examples of 

such connectivity-based clustering procedures are DBSCAN (Ester et al., [5]) and OPTICS 

(Ankerst et al., [2]); see also Oduntan [15]. 

  
The current paper addresses a key challenge that may occur in this context: It consists of the 

possibility that the variables in the relevant datasets may be of mixed type, i.e. some of them may 

be continuous, while others may either be ordered and discrete (like in the case of school grades) 
or unordered and discrete (like in the case of country identifiers). This raises the question of how 

the pairwise distances between the individual entities, which are key inputs for separating low- 

and high-density regions, are to be measured. A possible solution to this problem is proposed in 
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Section 2 of this paper. The proposed clustering procedure itself, which is closely related to the 
concept of shared neighbourhoods presented in Houle et al. [10], is described in Section 3. 

Section 4 summarizes the outcomes of a number of exemplary applications. Section 5 concludes. 

 

2. MEASURING DISTANCES BETWEEN ENTITIES 
 

2.1. Starting Point 
 
As in Khatun and Siddiqui [12], we assume that there is a dataset consisting of N entities i = 1, 

…, N, each of which is characterised by a tuple qi = { xi, vi, zi }  of features. 
 

 xi is a realisation of a (K1×1) column vector X of numerical variables that either are 
continuous or treated as continuous for practical reasons 

 vi is a realisation of a (K2×1) vector V of ordered discrete variables, beginning with 1 

numbered consecutively in steps of 1, and 

 zi is a realisation of a (K3×1) vector Z of unordered, discrete variables. 

  

2.2. Pairwise Distance with Respect to Continuous Variables 
 

The distance between two entities i and j with respect to the values of  X is measured by the 

Manhattan Distance (see, e.g., Yang [20]) between the standardized xi and xj values as follows: 
 

             (1) 
 

where r(Xs) denotes the range of the observed values of Xs, i.e. the difference between the sample 

maximum and the sample minimum.   
 

In this context, the Manhattan Distance is preferred to the more commonly used Euclidean 

distance because when using the former, the contrast between the distances from different data 

points shrinks less rapidly as the dimension K1 of X grows; see Aggarwal, Hinneburg, and Keim 
[1]. In addition, the application of the distance measure (1) simplifies the consolidation of 

distance measures for the different variable types involved, as will become obvious below. 

 

2.3. Pairwise Distance with Respect to the Ordered Discrete Variables 
 

The distance between i and j with respect to the values taken by the components of  V can be 
measured by 
 

              (2) 
 

where ms is the number of possible realisations of the s-th ordered discrete variable.  

 
This way of proceeding is justified as follows: If Vs is an ordered, discrete variable ranging from 

 to ms in steps of 1, then the actual value vi,s can be assumed to be dependent on the value taken 

by a latent (=unobservable) variable vi,s
*  ]0; 1]  as follows: 

 

  vi,s = j  if   vi,s
*  ](j-1)/ ms;  j/ms ]                                         (3) 
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The distance between the mid-points of two neighbouring sub-intervals given in (3) equals 1/ms. 

 

2.4. Pairwise Distance based on Unordered Discrete Characteristics 
 
With regard to Z, the distance between two entities i and j can be quantified by their separateness 

or lack of overlap (see, e.g., Stanfill and Waltz [16]), based on the Hamming Distance (Hamming 

[9]): 

 

              (4)    
 

In the above equation, I(.) is the indicator function that equals 1 if the condition in brackets is 

fulfilled and 0 if not. The scalar ms stands for the number of distinct possible realisations of the s-
th unordered discrete variable.  
 

The distance prevailing between two specific realisations zi,s and zj,s of the s-th unordered discrete 

variable Zs with respect to the values thus equals 0 if zi,s equals zj,s, and 1/ms if not. The distance 

between pairs of observations with different values of Zs, as measured by (3), thus shrinks as the 

number of possible realisations of the relevant variable increases. This normalisation rule is 

motivated by the idea that the finer the classification scheme according to which individual 

entities are grouped, the smaller the average number of entities per group, and the less certain we 
can be that differences in group membership reflect actual disparities between the entities, rather 

than merely random “noise”. 

  

2.5. Overall Pairwise Distance Between Two Entities 
 

The overall distance score between two entities i and j can then be calculated by summing up the 
distance measures for the different types of variables given in (1), (2), and (4). 

 

     (5) 

 

3. CLUSTERING PROCEDURE 
 

As mentioned in the introduction, the clustering procedure proposed in this section is based on 
the concept of shared neighbourhood, as presented in the seminal paper by Houle et al. [10]. This 

approach is adopted here because, according to the authors, it is less affected by the “curse of 

dimensionality” (Bellman [3]). What is meant by this term is that as the number of variables 
under consideration grows, the size differences between the pairwise distances of the individual 

data points decrease, which makes it increasingly impossible to form meaningful clusters based 

on such distances. 

 
In line with the above specifications, it is possible to calculate, for each entity i in the sample, the 

distance between itself and each of the remaining (N-1) entities, and to sort the results of these 

calculations in ascending order. Let i(1) ≤ i(2) ≤ … ≤ i(N-1) denote the sorted distances from i, 

and let g > 0 be a user-specified integer number. Then, the adjacency set Si of entity i, is defined 

as the sets of all entities j i for which the inequality d(i,j) ≤ i(g) holds: 
 

Si  := { j i | d(i,j) ≤ i(g)}                 (6) 
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Two entities j and i are considered mutually interlinked if their adjacency sets Si and Sj have at 

least one element in common: 

 

Si  ⚭ Sj       Si  Sj  {}             (7) 

 

The proposed clustering procedure can then be summarized as follows: 

 
Listing 1: Clustering Procedure 

 
Step 1: Gather all entities in the sample in the subset of hitherto unassigned entities 

Step 2:  Initialize the cluster index c as 0. 

Step 3: Increase the cluster index c by 1. 

Step 4:  Set the number of elements in cluster c, denoted by nc, to 0 

Step 5: Set i to 1. 

Step 6: If  

 entity number i has not yet been assigned to a cluster and  

 nc exceeds 0 and 

 entity number i and at least one element of cluster c are mutually 

interlinked 
then 

 assign entity number i to cluster c,  

 remove entity number i from the subset of hitherto unassigned entities, and 

 increase nc by 1 
 

Step 7: If  

 entity number i has not yet been assigned to a cluster, and 

  nc equals 0,  

then  

 assign entity number i to cluster c,  

 remove entity number i from the subset of hitherto unassigned entities, and 

 increase nc by 1  

Step 8: Increase i by 1 

Step 9 If i ≤ N, continue with Step 6   

Step 10 If i > N, and if there is at least one object in the subset of hitherto unassigned 

entities that is mutually interlinked with at least one element of cluster c, continue 

with Step 5. 

Step 11 If i > N and if there is not a single element in the subset of hitherto unassigned 

entities is mutually interlinked with at least one element of cluster c,  continue with 

Step 3. 

Step 12 If i > N and the set of hitherto unassigned entities is empty, terminate. 

 

An implementation of this procedure in the matrix language GAUSS, together with the datasets 
for the examples from the following section, is available on the WWW via  

https://drive.google.com/drive/folders/1putjdHHMJjg2TafWenFl9lMBr3ShxC93?usp=drive_link 

. 
The above procedure will cause each of the entities in the sample to be unequivocally assigned to 

a single cluster. However, particularly when the number g of neighbouring entities from which 

the adjacency set of each entity i is derived is small (say, e.g. 1 or 2), some or even many objects 
will be assigned to “degenerate” clusters comprising only a single object. On the other hand, 

raising the value of g above a certain threshold (the level of which depends on the distributional 

characteristics of the underlying dataset) will cause all objects to be gathered in a single, 

maximally heterogeneous group. It thus becomes obvious that the choice of g implies a trade-off 
between the potentially conflicting objectives of within-cluster homogeneity on one hand and 
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inclusiveness (i.e. the assignment of as many entities as possible to valid, or “non-degenerate”, 
clusters) on the other.  

 

The proposed solution to this problem is to compare different possible outcomes of the clustering 

procedure with a measure of separation accuracy that can be calculated as follows: Let min 

denote a user-defined minimum cluster size, c(i) the index number of the cluster to which object i 
has been assigned, and nc(i) the number of objects in that cluster. Then, the quantity 

 

           (8) 

 

equals the distance between object i and its closest neighbour within its cluster, provided that 

 at least reaches the specified minimum size, whereas 

 

           (9) 

 
equals the distance between object i and its closest neighbour outside its cluster  whenever c(i) 

does not fall short of min. Then, for any given value min,  the particular value  g* of g that 

maximizes the quantity 

 

                      (10) 

 

can be looked upon as the one that maximizes the separation accuracy associated with the chosen 

value of min.  

 

4. EXEMPLARY APPLICATIONS 
 

4.1. Two-Dimensional Datasets with Continuous Variables Only 
 
Although the main purpose of the proposed method is to allow the clustering of mixed data, some 

of its key characteristics are probably best understood when applying it to a small set of 

deliberately simple cases. The first important feature is that, unlike the centroid-based 
procedures, the procedure from Sections 2 and 3 can identify clusters of arbitrary shape rather 

than being limited to ones with round or oval profiles. In an exemplary manner, this is shown for 

the “Aggregation” dataset examined by Gionis, Mannila and Tsaparas (2007). Figure 1 displays 

the outcome of an application of the proposed procedure in this case: 
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Figure 1 

 

In the proposed procedure, the measure of neighbourliness that is used to decide whether two or 

more data points belong together or are considered separate is not defined by a fixed distance 

threshold; rather it is based on the presence or absence of at least one common neighbour. In a 
setup where the individual clusters differ greatly in terms of the average pairwise distance of the 

associated objects, this feature enables the procedure from Section 3 to identify such 

accumulations of objects nevertheless, as is shown by its application to the “toy dataset” dealt 
with in Jain and Law [11]: 

 

 
 

Figure 2 

 

However, the application of the proposed method to the R15” dataset studied in Veenman, 
Reinders and Backer [18] also points to the flip side of the apparent advantages of our algorithm: 

Because of its emphasis on common close neighbours, it tends to merge groups of objects 

surrounding two or more different central points into a single group whenever there is some 
degree of overlap between them. This can sometimes lead to counterintuitive results, as Figure 3 

indicates: Here, our algorithm forms a single cluster out of eight centrally located point clouds 

near the centre of the diagram, although most human observers would probably have perceived 
them as separate groups. 

 

The outcome for the dataset “Unbalance” examined by Rezaei and Fränti [14] (see Figure 4) 

further underscores this point. Here, most human observers would probably have split Cluster 1 
in four and Cluster 2 into three separate “sub-clusters”. 

 

The above findings show that the proposed approach is far from a universal, objective solution to 
clustering problems. It should rather be considered one out of several related approaches which, 

in view of the variety of possible data and research objectives, can produce results with very 

different degrees of plausibility from case to case. 
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Figure 3 
 

 
           

Figure 4 

 

The four examples in this subsection relate to synthetically generated data points from a bivariate 
distribution involving continuous variables only. The purpose of the two following subsections is 

to demonstrate that the proposed algorithm can also produce plausible results in real-world 

situations involving more variables, and variables of different types. 
 

4.2. Country Grouping by Macroeconomic Indicators 
 
The above procedure can be applied to form groups of countries based on similarity comparisons 

with regard to their geographic location as well as a number of macroeconomic indicators. In the 

particular case examined here, we use the seven World Bank [19] regions as geographical 

assignment indicators and a set of four macroeconomic variables, which include (i) GDP per 
capita, as well as (ii) government debt, (iii) the current account balance, and (iv) the government 

budget balance, the last three of which are being expressed as a percentage of GDP. This choice 

is motivated because the four variables just mentioned are among the most commonly used 
indicators used to assess the resilience of countries to adverse economic shocks; see, e.g., 

Briguglio et al. [4] for a more comprehensive treatment of this issue. The common source for all 

the data in use is Trading Economics [17], and the reference date is generally the year-end of 
2022. If no data is available for this date, the most recent earlier key date has been chosen. After 

removing sovereign states with missing data, we end up with a sample of 163 countries. 

  

With the minimum cluster size min set to 2, application of the above procedure to the dataset 

compiled accordingly yields an optimum number of close neighbours (g*) of 2 and leads to two 
large clusters, one more small cluster of only two countries (Cambodia and the Maldives), and a 

total of six “outliers” (Afghanistan, Bhutan, Cyprus, Guinea, Indonesia, and Lebanon) that cannot 
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be assigned to a cluster that reaches or exceeds the above size threshold. Table 4.1.1. enumerates 
the countries assigned to Cluster 1 and 2 by region. Descriptive statistics of the four continuous 

variables in use are given in Tables 4.1.2 to 4.1.5. 

 
Table 1: Distribution of countries across Clusters 1 and 2 

 
 Cluster 1 Cluster 2 

East Asia & 

Pacific 

Fiji, Japan Australia, Brunei, China, Laos, Malaysia, 

Mongolia 

Myanmar, New Zealand, Papua New 

Guinea,  

Philippines, Singapore, South Korea, 

Thailand,  

Vietnam 

Europe & Central 

Asia 

Albania, Armenia, Belgium, 

Bosnia and Herzegovina, France, 
Georgia, Greece, Italy, 

Macedonia, Moldova, 

Montenegro, Portugal, Serbia, 

Spain, Ukraine, United Kingdom, 

Uzbekistan 

 

Austria, Azerbaijan, Belarus, Bulgaria, 

Czech Republic, Croatia, Denmark, 
Estonia, Finland, Germany, Hungary, 

Kazakhstan, Kosovo, Kyrgyzstan, 

Iceland, Latvia, Lithuania, Luxembourg, 

Netherlands, Norway, Poland, Romania, 

Russia, Slovakia, Slovenia, Sweden, 

Switzerland, Tajikistan, Turkey, 

Turkmenistan 

Latin America & 

Caribbean 

Argentina, Bahamas, Belize, 

Bolivia, Brazil, Chile, Colombia,  

Costa Rica, Dominican Republic, 

Ecuador, El Salvador, Guatemala, 

Haiti, Honduras, Jamaica, 
Mexico, Nicaragua, Panama, 

Paraguay, Peru, Suriname, 

Trinidad and Tobago, Uruguay,  

Cayman Islands 

Guyana 

Middle East & 

North Africa 

Algeria, Bahrain, Djibouti, Egypt, 

Iran, Iraq, Jordan, Libya, 

Palestine, Tunisia 

Israel, Kuwait, Malta, Saudi Arabia,  

United Arab Emirates, Oman, Qatar 

 

North America Canada, United States  

South Asia Bangladesh, Nepal, India, 

Pakistan, Sri Lanka 

 

Sub-Saharan 

Africa 

Angola, Benin, Botswana, 

Burkina Faso, Burundi, 

Cameroon, Cape Verde, Central 

African Republic,  

Chad, Comoros, Congo, Ethiopia, 

Equatorial 1Guinea, Gabon, 
Gambia, Ghana, Guinea, Guinea 

Bissau, Ivory Coast, Kenya, 

Lesotho, Liberia, Madagascar, 

Malawi, Mauritania, Mauritius, 

Mozambique, Namibia, Niger, 

Nigeria, Republic of the Congo, 

Senegal, Sierra Leone, Rwanda, 

Seychelles, South Africa, Sudan, 

Swaziland, Tanzania, Togo, 

Uganda, Zambia, Zimbabwe 

 

Central African Republic, Liberia, 

Mauritania, Niger, Senegal, Seychelles 
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Table 2: Descriptive Statistics by Cluster, GDP per capita 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 13829.40 13347.69 705.00 63670.00 95 

2 36308.82 26802.29 838.00 115683.00 60 

3 11560.00 10189.41 4355.00 18765.00 2 

Sample 22067,75 22162,15 705.00 115683.00 163 

 
Table 3: Descriptive Statistics by Cluster, Government debt as a percentage of GDP 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 71.38 40.39 14.60 264.00 95 

2 46.80 24.67 1.90 160.00 60 

3 47.35 14.92 36.8 57.9 2 

Sample 62,32 37.89 1,9 264 163 

 
Table 4: Descriptive Statistics by Cluster, Current account balance as a percentage of GDP 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 -3.15 6.56 -23.8 19.2 95 

2 0.42 12.36 -26.8 30.5 60 

3 -21.75 7.28 -26.9 -16.6 2 

Sample -2.21 10.17 -33.80 30.50 163 

 
Table 5: Government budget balance as a percentage of GDP 

 

Cluster #  Mean Std. dev. Min. Max # obs. 

1 -4.28 5.07 -35.00 6.50 95 

2 -2.41 4.35 -19.30 11.60 60 

3 -10.80 4.95 -14.30 -7.30 2 

Sample -3.62 4.88 -35.00 11.60 163 

 

It turns out that the entities assigned to Cluster 1, on average, have a lower GDP per capita and 

higher ratios of government debt and government budget deficits to GDP than those gathered in 

Cluster 2. In both of these cases, a standard two-sample t-test leads to a rejection of the null 
hypothesis of equal means on a confidence level exceeding 99%. Moreover, the average 

government budget balance and the average current account balance, both expressed as a 

percentage of GDP, are lower in Cluster 1 than in Cluster 2. In both of these cases, the absolute 
values of the associated t-statistics exceed the 95% critical value for a two-sided test by far.  

 

Clusters 1 and 2 also exhibit considerable differences between the correlation patterns prevailing 

between the continuous variables involved, only the most striking of which are mentioned in the 
following:  

 

 In Cluster 1, the sample correlation coefficient between the GDP per capita and the 

government budget balance per unit of GDP exceeds 0.5 and is statistically significant on 
a 95% level. In Cluster 2, the same coefficient is below 0.06 and statistically 

insignificant. 
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Figure 4: 

 

 In Cluster 1, the correlation coefficient between GDP per capita and the government’s 
budget balance takes a negative value (-0.20), whereas in Cluster 2, the corresponding 

coefficient has the opposite sign (0.297). A t-test derived a corresponding bivariate linear 

regression in which the slope parameters were allowed to differ in Cluster 1 and Cluster 2 
resulted in the null hypothesis of identical parameter values being rejected on a 99% 

confidence level. 

 

 
 

Figure 5: 

 

The above results clearly indicate that, in this particular case, the proposed clustering procedure 

succeeds in allowing the identification of subgroups of entities with statistically significant 
distributional characteristics that might not have been detectable with other tools of exploratory 

data analysis, such as histograms and scatterplots. 

 

4.3. Clusters of Credit Card Applicants 
 

Another dataset to which the procedure from sections 2 and 3 can be applied is the sample of 
applicants for a specific type of credit card provided in the online complements of Greene’s [8] 

econometrics textbook. The dataset consists of 1,319 observations on 12 variables. The variables 

used in the current example are listed in Table 4.2.1. 
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Table 6: Variables Used in the Credit Card Example 

 
Name Type Description 

card Discrete, unordered = 1 if application was accepted, = 0 otherwise 

reports Treated as continuous Number of major derogatory reports 

age Continuous Age of the applicants in years 

income Continuous Annual income in USD 10 000 

owner Discrete, unordered = 1 if applicants own their home, = 0 otherwise 

selfemp Discrete, unordered = 1 if applicants are self-employed, = 0 otherwise 

dependents Treated as continuous Number of dependents 

 

In this case, the application of the proposed procedure with a minimum cluster size of 2 leads to 

the formation of two large clusters without any outliers. Cluster 1, the larger of these two, number 
1, comprises little more than two-thirds of the sample. Cluster-specific descriptive statistics for 

those that either are continuous or treated as such are given in Tables 7 to 10 below. 

 
Table 7: Descriptive Statistics by Cluster, Variable “reports” 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 0.6212 1.5917 0.0000 14.0000 887 

2 0.1180 0.3942 0.0000 3.0000 432 

Sample 0.4564 1.3453 0.0000 14.0000 1319 

 
Table 8: Descriptive Statistics by Cluster, Variable “age” 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 35.4493 10.1895 0.1667 83.5000 887 

2 28.6215 8.3509 0.5000 67.1667 432 

Sample 33.2131 10.1428 0.1667 83.5000 1319 

 
Table 9: Descriptive Statistics by Cluster, Variable “income” 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 3.6686 1.8618 0.2100 67.1667 887 

2 2.7427 1.0347 1.3200 10.9999 432 

Sample 3.3654 1.6939 0.2100 13.5000 1319 

 
Table 10: Descriptive Statistics by Cluster, Variable “dependents” 

 
Cluster #  Mean Std. dev. Min. Max # obs. 

1 1.3766 1.3372 0.0000 6.0000 887 

2 0.2083 0.4066 0.0000 1.0000 432 

Sample 0.9939 1.2477 0.0000 6.0000 1319 

 

The outcome of a two-sample t-test indicates that, for each of the four variables named above, the 

cluster-specific differences in the means are statistically significant at a 99% confidence level.  
Below is information on cluster-specific frequency distributions for the three binary indicator 

variables in use. Here, too, the absolute values of the t-statistics relating to the differences 

between the two clusters exceed the critical values for the 99% confidence interval by far. 
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Table 11: 

 
Cluster #   application accepted  % self-employed % homeowners 

1 66.63% 10.26% 65.50% 

2 100.00% 0.00% 0.00% 

Sample 77.56% 6.90% 44.04% 

 

In most of the above cases, the cluster-specific pairwise correlation patterns between the four 

numerical variables involved (“reports”, “age”, “income”, and “dependents”) do not show any 
pronounced differences. An exception, however, is the relationship between the income variable 

and the number of dependents, which is positive and statistically significant on a 95% confidence 

level in the case of Cluster 1 but close to zero in Cluster 2. Hence, the supposition that the 

proposed clustering method can be applied to identifying subgroups of entities with significantly 
different statistical characteristics is also confirmed by the results obtained in this case. 

 

4.4. Precautionary Remarks 
 

Given the obvious suitability of the proposed approach in the context of the above examples, it 

appears necessary to mention a number of problems that cannot be resolved by its application: 
 

 The performance of the algorithm presented and the characteristics of the outcomes 

obtained are very sensitive to the choice of the minimum cluster size and the number of 

neighbouring entities from which the adjacency set of each entity is derived. If the latter 
is chosen too small, the proposed method may result in the formation of "degenerate" 

clusters with only very few elements. 

 

 Many datasets to which this method can, in principle, be applied may contain one or 

more “irrelevant” variables that do not contain any information on the basis of which 
objects can be meaningfully divided into groups of interconnected elements. 

   

 Especially in data sets with many variables, strong dependency relationships between 

individual attributes, or subsets thereof, can prevent the application of distance-based 
grouping procedures of the kind described here. 

 

 The problem persists that notions like “distance” or “neighbourhood” become less 

significant as the dimension of a dataset increases. The method proposed in this paper 
may help mitigate this under favourable conditions, but it is by no means a complete 

solution. 

 

 The performance of the proposed algorithm is very sensitive to the structure and 

distribution of the data to which it is applied. Hence, it remains an open question to what 
extent the proposed algorithm can be generalized across different datasets.  

 

5. CONCLUSIONS 
 
In this paper, a distance-based clustering procedure for data of mixed type has been proposed. 

The feasibility of the proposed method and its ability to produce empirically plausible results 

were demonstrated using some application examples of different nature and complexity. 

However, the curse of dimensionality and the possible presence of irrelevant or strongly 
interrelated (groups of) variables remain issues that can lead to great difficulties for such 

applications. Hence, augmenting the proposed technique with feature selection and/or 
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dimensionality reduction techniques that may help mitigate this problem is a promising area for 
future research.  
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