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Abstract. The construction industry faces challenges in extracting and interpreting semantic information
from CAD floor plans and related data. Graph Neural Networks (GNNs) have emerged as a potential so-
lution, preserving the structural integrity of CAD drawings without rasterization. Accurate identification
of structural symbols, such as walls, doors, and windows, is vital for generalizing floor plans. This paper
investigates GNN methods to enhance the classification of these symbols in CAD floor plans, proposing
an entity-as-node graph representation. We evaluate various preprocessing strategies and GNN architec-
tures, including Graph Attention Networks (GAT), GATv2, Generalized Aggregation Networks (GANet),
Principal Neighborhood Aggregation (PNA), and Unified Message Passing (UniMP) on the CubiCasabK
dataset. Our results show that these methods significantly outperform current state-of-the-art approaches,
demonstrating their effectiveness in CAD floor plan entity classification.
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1 Introduction

Floor plans are fundamental in architecture and civil engineering, providing essential
structural and geometric details of buildings. They offer a comprehensive view of dimen-
sions, spatial organization, and the arrangement of various elements within a single model.
Computer-aided design (CAD) plans [1] are particularly valuable because they represent
vertical sections derived from horizontal planes within a building. CAD drawings are cru-
cial throughout the planning, construction, and maintenance phases. They present a clear
depiction of design elements, facilitate effective communication among stakeholders, and
ensure consistency with the design.

Despite their critical role, the manual processing and analysis of CAD drawings are
often labor-intensive and fraught with inefficiencies. This limitation highlights a pressing
need for more advanced and automated analysis methods. The automatic analysis of CAD
drawings presents an opportunity to advance Building Information Modeling (BIM) [2].
BIM represents a significant evolution from traditional CAD by providing a more com-
prehensive and dynamic representation of buildings, encompassing detailed physical and
functional characteristics. This enriched model enhances the accuracy of building represen-
tations and supports more effective management throughout the building’s lifecycle, from
construction to operation and maintenance. Automating the analysis of CAD drawings
streamlines the BIM process and integrates data more seamlessly, leading to improved
modeling precision and more efficient project management. This automation facilitates
the development of more coherent workflows, minimizes errors, and supports informed
decision-making. Consequently, it contributes to more successful and sustainable building
practices by optimizing resource utilization and enhancing overall project outcomes.

CAD drawings are denoted through vector-based graphics, utilizing geometrical entities
such as lines, polygons, arcs, circles, and ellipses to depict various objects and structures.
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Recent advancements have seen Graph Neural Networks (GNNs) [3] emerge as a powerful
tool for leveraging the structural properties inherent in these vector-based representations.
GNNs can capture and analyze the relationships between different entities within the floor
plan, thus offering a more profound and insightful understanding of the data.

In this study, we propose a novel approach to CAD floorplan analysis. We employ an
entity-as-node paradigm within a GNN framework for classifying floorplan elements. Our
approach introduces a new methodology for data manipulation utilizing the CubiCasabK
[4] floorplan dataset. This method emphasizes the importance of graph-specific informa-
tion, focusing on edge-based entity relationships to enhance classification accuracy. Our
key contributions include:

— Efficient Vector Representation: We developed an advanced vector representation
of floorplan elements through intersection-based element splitting, which improved the
granularity and detail of the representation.

— Multi-Class Classification Framework: We propose a robust multi-class classifica-
tion framework that leverages GNNs to classify various floorplan elements accurately,
thus advancing the state of the art in CAD floorplan analysis.

— Enhanced Entity Classification: Our approach improves entity classification by
incorporating edge-based relations, providing a more nuanced understanding of the
spatial and functional relationships between elements.

These advancements push the boundaries of CAD floorplan analysis and classification,
contributing to more precise and efficient methods in the construction domain. By inte-
grating these innovations, our study aims to set a new standard for automated analysis in
architectural and engineering applications, driving theoretical and practical advancements
in the field.

1.1 Related work

Automating the analysis of CAD floor plans is a complex task. It involves two primary
methodologies: pixel-based and vector-based approaches. Pixel-based methods rely on ras-
terized images, which convert floor plans into grids of pixels. This transformation poses
challenges in capturing precise geometric details due to the loss of structural clarity. On the
other hand, vector-based methods leverage organized geometric and semantic information,
allowing for more sophisticated computational processing and editing. This structured rep-
resentation facilitates a more accurate and detailed analysis of CAD floor plans, preserving
the integrity of the original design elements.

Graph Neural Networks (GNNs) have emerged as a powerful tool for analyzing CAD floor
plans, offering a promising alternative to traditional methods. For example, Hu et al. [5]
introduced Graph2Plan, a cutting-edge framework that integrates GNNs with Convolu-
tional Neural Networks (CNNs). This innovative approach enhances floor plan analysis
by combining the spatial features extracted by CNNs with a graph-based representation
created by GNNs. Similarly, Paudel et al. [6] represented floor plans as undirected graphs,
where rooms are nodes and adjacency relationships are edges. This method effectively
captures the relational structure of floor plans, facilitating advanced tasks such as room
segmentation and classification. Chen et al. [7] further advanced this field by proposing
novel graph-based techniques to capture complex layout features, thereby improving clas-
sification accuracy and overall analysis performance.

Ahmed et al. [8] developed a method focused on automatic room detection and labeling
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within architectural floor plans. Their approach includes preprocessing steps for enhanc-
ing image quality and feature extraction techniques to differentiate between various room
types and labels. This methodology significantly improves the efficiency and accuracy of
room classification, which is crucial for automating large-scale floor plan datasets. Zhang
et al. [9] explored a GNN-based approach for classifying architectural floor plans, using
graph representations to capture intricate relationships within the data. Wang et al. [10]
utilized hierarchical GNNs to capture multi-level relationships within floor plans, enhanc-
ing classification accuracy by integrating both local and global structural information.

Our research presents a novel approach by employing an entity-as-node methodology [11],
diverging from the previously explored edge-oriented methods. This innovative approach
improves the clarity and efficiency of floor plan representation, leading to superior per-
formance in node classification tasks. By representing each entity in the floor plan as a
distinct node in the graph, we enhance the precision of the analysis and address limitations
found in prior GNN studies. We integrate this entity-as-node approach with comprehen-
sive data preprocessing to refine CAD floor plan analysis.

We rigorously evaluate various GNN architectures for multi-label entity classification on
floor plan graph nodes. These architectures include Graph Attention Networks (GAT)
[12], GATv2 [13], Generalized Aggregation Networks (GANet) [14], Principal Neighbor-
hood Aggregation (PNA) [15], and Unified Message Passing (UniMP) [16]. PNA enhances
node representation by employing diverse aggregation strategies, while UniMP offers a
unified framework for message passing in graphs. Our experiments reveal that UniMP
[16] achieves the highest performance, demonstrating the exceptional effectiveness of our
proposed approach in classifying entities within CAD floor plans. This work highlights the
potential of advanced GNN methodologies in transforming the analysis and interpretation
of complex architectural designs.

2 Proposed Approaches

The workflow and experimental pipeline of our approach are illustrated in Figure 1. The
process initiates with the preprocessing of CAD floor plan elements, initially provided in
SVG format. This preprocessing stage encompasses several critical steps: annotation, sub-
division, and normalization of the elements. Additionally, some methods include splitting
or merging elements based on intersection points or start-end coordinates to enhance the
granularity of the representation. After preprocessing, the floor plan elements are rep-
resented as nodes within a graph. The connections between these nodes are established
based on a predefined strategy, creating a comprehensive graph structure. Each node in
the graph has features, including identifiers, class labels, fill and stroke attributes, style,
opacity values, and stroke width, that provide a rich representation of the floor plan data.
The graph features are then input into five distinct Graph Neural Networks (GNNs) for
the task of node classification. Each GNN processes the graph to predict node labels,
which may correspond to categories such as Wall, Window, Stairs, Railing, and Misc.
The output semantic graph is labeled using these predicted labels. The final phase of the
process involves visualizing the semantic floor plan according to the predicted labels. This
visualization serves as a tool to interpret the effectiveness of the classification, providing
insights into the accuracy and reliability of the GNN models. The results are meticu-
lously analyzed to draw conclusions and evaluate the performance of the employed GNN
architectures, thereby assessing their efficacy in the CAD floor plan analysis.
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Input CAD floor plan Graph representation Graph neural network (GNN) Semantic Graph representation ~ Semantic Floor plan

Fig. 1. Workflow of GNN-based CAD entity classification with the proposed approach of element inter-
section splits and leveraging of edge-based entity relations.

2.1 Cubicasab5K Dataset

For this study, we employed the CubiCasa5K dataset [4], which comprises 5000-floor plan
images in SVG format. Each image in this dataset provides comprehensive shape at-
tributes, including coordinates, color, and line thickness [17]. Sample images from the
CubiCasabK dataset are depicted in Figure 2.

The dataset is categorized into three subsets: 4200 floor plans for training, 400 for val-
idation, and 400 for testing. The preprocessing pipeline follows the CubiCasa5K method-
ology [4], encompassing several critical steps:

— Annotation: Each SVG element is annotated to identify its class and relevant features.

— Subdivision: The elements are subdivided to improve resolution and detail for anal-
ysis.

— Normalization: Attributes such as coordinates, color, and thickness are normalized
to ensure consistency across the dataset.

Upon completion of the preprocessing steps, the SVG elements are transformed into
graph nodes. The connections between these nodes are established based on a predefined
strategy, resulting in a structured graph representation of the floor plans. This structured
graph is the foundation for subsequent analysis, enabling a detailed examination of the
floor plan data.
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Fig. 2. Sample images from Cubicasa 5k dataset. The images from left to right are original floorplan image
and the SVG label. [4]
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2.2 Approaches for CAD Entity Classification

This study evaluates eight distinct methods for classifying CAD floorplan entities using
Graph Neural Networks (GNNs). The baseline method, ”ENNet” (Entity-as-Node Net-
work), represents each CAD floorplan element as an individual node in the GNN. This
method serves as a state-of-the-art reference.

Seven additional approaches build on the ENNet framework by incorporating three
distinct augmentation features, with suffixes indicating the specific features utilized:

— d : Utilization of edge features, which capture distance information between nodes.
— ¢ : Establishment of node connections based on intersections between elements.
— s : Implementation of element sub-splitting based on crossing points.

For example, ENNet-cd integrates element intersection information for node connections
and incorporates edge features into the graph representation but does not use sub-splitting
of elements based on crossings.

As detailed in Table 1, the eight approaches range from ENNet to ENNet-scd, each
representing a unique combination of these three experimental factors: element intersection
splits, node connection methods, and edge feature utilization.

Approach Intersection split Node connection Distance edge feature
ENNet X Start-end point X
ENNet-d X Start-end point (0)
ENNet-c X Intersection X
ENNet-cd X Intersection (0]
ENNet-s O Start-end point X
ENNet-sd O Start-end point O
ENNet-sc O Intersection X
ENNet-scd (0] Intersection (0)

Table 1. The state-of-the-art ENNet approach and 7 proposed approaches listed with differentiation based
on three separate experimental features.

2.3 Methods for CAD Floorplan to Graph Conversion

We have developed three methods for forming links between entity nodes and specifying
edge features at the graph level.

Start-End point-based connection The start-end point-based connection method is
designed to form connections between entity nodes in a graph based on their start and end
coordinates. Each CAD floor plan element is an individual node within the graph. The
core principle is establishing edges between nodes if their start or end points are nearby
or exactly match. Specifically, an edge is created between two nodes if either the start or
end point of one node coincides with start or end point of another node. This method
ensures the graph accurately reflects the spatial relationships between different entities in
the floor plan. A rounding technique handles minor deviations in coordinate values and
to ensure precise node connections. This technique adjusts the coordinates to a standard
precision, reducing the impact of minute measurement inaccuracies that could otherwise
lead to erroneous or missed connections.
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For instance, consider the scenario illustrated in Figure 3 (a). Here, nodes A, B, and C
represent separate entities within the graph. The entities A and B are connected by an
edge because they share a common coordinate point, either as a start or end point, indi-
cating a direct spatial relationship between them. This connection captures the relational
information between nodes A and B, enhancing the overall connectivity and contextual
understanding of the floor plan. Conversely, entity C does not share any start or end
points with the other entities and, therefore, does not form any connections. As a result,
entity C remains isolated within the graph, highlighting the importance of shared points
in establishing meaningful connections between nodes.

This method is useful for creating a comprehensive and accurate graph representation
of floor plans, as it effectively captures spatial relationships crucial for subsequent analysis
and classification tasks. By focusing on the start and end points, the approach ensures
that the graph accurately mirrors the layout and connectivity of elements within the CAD
floor plan.

A B A B A B A B
*r—
R . 7
C C
C C
(a) Start-End point-based node connection. (b) Intersection-based node connection.

Fig. 3. Two different approaches to creating node connections.

Intersection-based connection In Figure 3 (b), the layout of independent graph en-
tities A, B, and C remains consistent with Figure 3 (a), but the method used to define
node connections has been altered. The intersection-based approach identifies and incor-
porates crossings between entities, offering a more nuanced method for establishing node
connections. Unlike the start-end point-based method, which previously failed to recog-
nize any relational connection between entity C and the other entities despite their spatial
proximity, the intersection-based method significantly enhances adjacency detection by
focusing on intersection points. This approach utilizes information diffusion mechanisms
[18] within Graph Neural Networks (GNNs). In this context, node features are propagated
and aggregated across multiple layers, allowing the network to effectively capture and
utilize the relational information inherent in the graph structure. The intersection-based
method employs a sweep line algorithm to detect segment intersections within the floor
plan. This algorithm systematically processes the floor plan elements to identify points
where different segments cross each other.

A rounding method is applied to smooth out minor coordinate deviations, similar to the
technique used in the start-end point-based approach. This preprocessing step helps to
mitigate the effects of minute measurement inaccuracies that could otherwise disrupt the
identification of intersections. By detecting and incorporating segment intersections, the
intersection-based approach enhances the ability of the GNN to recognize and model spa-
tial relationships between entities. This improved adjacency detection allows for a more
comprehensive and accurate representation of the floor plan. It contributes to better per-
formance in subsequent analysis and classification tasks.

36



International Journal on Cybernetics & Informatics (1JCI) Vol.13, No.5, October 2024

Distance edge feature This research investigates whether incorporating graph edge in-
formation, in addition to basic node features, improves model performance in CAD entity
classification tasks. The focus is on evaluating whether edge features enhance the classifica-
tion accuracy of methods such as ENNet-d, ENNet-cd, ENNet-sd, and ENNet-scd. These
methods utilize edge features to capture the relationships between connected nodes in the
graph. One crucial edge feature examined is cross-distance information, which quantifies
the numerical distances between linked entities. Cross-distance information is valuable due
to its direct representation of spatial relationships within the CAD floor plans. We use
Euclidean distance as the edge feature to measure these spatial relationships. However,
defining these edge features presents challenges due to the arbitrary nature of CAD floor
plan elements and their varying orientations.

To address these challenges, we prioritize the features that are more indicative of the spatial
relationships between entities. For instance, instead of using explicit start and end point
positions—such as distances between start points or endpoints—features reflecting overall
spatial relationships, like maximum, minimum, and mean distances, were selected. These
features offer a more consistent and interpretable representation of the distances between
nodes. Figure 4 illustrates these chosen features and their implementation, highlighting
their effectiveness in capturing the independent relationships between connected entities.
By evaluating these edge features, this research aims to determine their impact on enhanc-
ing the performance of graph-based models in classifying CAD entities. It contributes to
more accurate and reliable floor plan analysis.

—— Entity 1
Entity 2

max_dist min_dist mean_dist
10.12 2.94 7.01

Fig. 4. 3-dimensional edge feature with distance information between entities. Distance values in the
feature matrix are chosen arbitrarily.

3 Experiments and Quantitative Results

3.1 Balanced Accuracy Metric

Given the label imbalance in the dataset, this study employs balanced accuracy [19] to
evaluate the performance of the multi-label classification model. Balanced accuracy is
selected to address the bias when a model trained on an imbalanced dataset. Balanced
accuracy provides the counts of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) for each class. For a given class i, Sensitivity is calculated
as:

TP

7 7
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where T'P; denotes the true positives for class i and F'N; represents the false negatives
for class i. Sensitivity, also known as the true positive rate, measures the proportion of
actual positives correctly identified by the model for class i.

To compute the overall balanced accuracy across all classes, we average the sensitivities
of each class. The formula for balanced accuracy is:

TP

N
1
Balanced Accuracy = — g —_— (2)
N — TP, + FN;

where N is the total number of classes. This metric calculates the mean sensitivity
across all classes, ensuring that each class contributes equally to the evaluation.

Additionally, balanced accuracy can be seen as a measure that combines the true
positive rate with the true negative rate. The true negative rate, or specificity, for class i
is:

_ TN 3)
TN, + FP;

where T'N; denotes the true negatives for class i and F'P; represents the false positives
for class i. While balanced accuracy primarily focuses on sensitivity, it is valuable to
consider specificity to understand the model performance comprehensively.

By averaging the true positive rates across all classes, balanced accuracy offers a more
accurate reflection of model performance. It ensures that each class performance is equally
weighted, thus providing a balanced view of the model’s ability to classify all classes
correctly.s

Specificity, =

3.2 Quantitative Results

Table 2 presents a summary of the experimental results across five different networks
for CAD floor plan entity classification, evaluating eight distinct approaches. Balanced
accuracy scores were obtained after training each model for 100 epochs, utilizing 50 hidden
units and 50 hidden layers.

Approach /Network GAT GATv2 GANet PNA UniMP
ENNet 0.740 0.737 0.638 0.615 0.750
ENNet-d 0.733 0.751 0.697 0.683 0.672
ENNet-c 0.946 0.948 0.812 0.896 0.984
ENNet-cd 0.957 0.930 0.981 0.987 0.919
ENNet-s 0.921 0.978 0.937 0.778 0.960
ENNet-sd 0.944 0.983 0.981 0.971 0.832
ENNet-sc 0.964 0.947 0.936 0.850 1.000
ENNet-scd 0.948 0.969 0.912 0.974 0.848

Table 2. Comparison of balanced accuracy scores for 5 different GNNs tested on the CubiCasa5K dataset
[4]. 8 different approaches are evaluated based on 3 separate experimental factors as seen in Table 1. For
each network, the highest score reached from all approaches is highlighted in bold.

Among the evaluated methods, FNNet-sc achieved the highest performance, attaining
a balanced accuracy score of 1.00 when paired with the UniMP network on the test set.
This result significantly surpasses the baseline FNNet approach, which achieved a maxi-
mum balanced accuracy of 0.75 with the same network. The performance of both ENNet
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and FNNet-d approaches was comparatively lower, with balanced accuracy scores ranging
from 0.615 to 0.751. Conversely, the approaches from ENNet-c through FNNet-scd gen-
erally exhibited higher balanced accuracy scores, with most methods surpassing 0.9. This
indicates a clear distinction between the lower-performing FNNet and ENNet-d methods
and the higher-performing FNNet-c to ENNet-scd methods, with no significant variation
observed within each group.

These results underscore the effectiveness of incorporating element intersection infor-
mation in enhancing classification performance. However, the influence of distance informa-
tion on graph edges exhibits variability depending on the network architecture employed.
The observed performance differences suggest that the impact of distance information can
be either beneficial or detrimental to classification outcomes. This variability may arise
from the common properties shared among various elements, such as walls and railings,
which frequently connect and interact, influencing the classification results.

4 Conclusion and Limitations

This work presents innovative methods to enhance Graph Neural Network (GNN) based
multi-label classification of floor plan entities by refining the input dataset. Significant
improvements include the removal of duplicate CAD elements and the segmentation of
elements based on their intersections. Experimental results, derived from eight distinct
approaches and evaluated across five different GNN architectures, demonstrate that inte-
grating element intersection information enhances classification performance, surpassing
previous state-of-the-art methods. It underscores the crucial role of preprocessing in opti-
mizing graph structure and leveraging the full potential of GNNs.

Despite these advances, several challenges remain. Label noise emerges from overlapping
elements of different types, complicating accurate classification and potentially degrad-
ing model performance. Additionally, the sweep line technique [20], employed for element
segmentation, has limitations as it primarily accommodates straight lines, which may not
capture all relevant intersections. Fully connected nodes also prove to be computationally
intensive, posing scalability issues.

5 Future Research Work

Future work should focus on several key areas to address these limitations and further
advance the field. Firstly, exploring alternative methods for node connections could lead
to more accurate and efficient graph representations. Techniques such as adaptive node
connection algorithms or distance-based similarity measures may offer improvements. Sec-
ondly, investigating the incorporation of additional node features is crucial. Features that
capture more detailed spatial and semantic information about the elements could enhance
the model’s ability to distinguish between entities. It might include integrating contex-
tual information or hierarchical relationships between entities. Thirdly, developing more
effective edge features could improve classification accuracy and computational efficiency.
Research into dynamic edge features that adapt based on the context or interaction pat-
terns between elements might yield promising results.

Additionally, addressing label noise through advanced data cleaning and augmentation
techniques could help mitigate inaccuracies caused by overlapping elements. To improve
the model’s robustness, we can explore techniques like semi-supervised learning or noise-
robust loss functions. Finally, expanding the experimental scope to include large and more
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diverse datasets could validate the generalizability of the proposed methods and assess
their effectiveness in various real-world scenarios. By addressing these areas, future re-
search will overcome present challenges and drive further advancements in floor plan entity
classification.
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