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ABSTRACT 

Traditional Partial Least Squares Regression (PLSR) models frequently underperform when handling 

data characterized by uneven categories. To address the issue, this paper proposes a Data Augmentation 

Partial Least Squares Regression (DAPLSR) model via manifold optimization. The DAPLSR model 

introduces the Synthetic Minority Over-sampling Technique (SMOTE) to increase the number of samples 

and utilizes the Value Difference Metric (VDM) to select the nearest neighbor samples that closely 

resemble the original samples for generating synthetic samples. In solving the model, in order to obtain a 

more accurate numerical solution for PLSR, this paper proposes a manifold optimization method that 

uses the geometric properties of the constraint space to improve model degradation and optimization. 

Comprehensive experiments show that the proposed DAPLSR model achieves superior classification 

performance and outstanding evaluation metrics on various datasets, significantly outperforming existing 

methods. 
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1. INTRODUCTION 

Due to the swift advancement of computer technology and multimedia, pattern recognition is 

increasingly faced with complex, high-dimensional datasets, including images, text, and speech. 

The diversity and complexity of these data bring new challenges to the learning of machine 

learning models. However, during the acquisition process, it is common to encounter rich 

sample content but an insufficient number of samples. 

Data augmentation is a widely adopted technique for the problem of small sample size, 

large number of categories and unevenness of categories. Data augmentation involves creating 

additional training samples by performing a sequence of changes and expansions to the original 

dataset. This process enhances the diversity and complexity of the data. These transformations 

include rotation, translation, scaling, flipping [1], and adding noise to simulate real-world data 

variations and uncertainties. Implementing data augmentation techniques enhances the model's 

capacity to generalize and robustness, hence mitigating the likelihood of overfitting, particularly 

in scenarios with scarce or imbalanced data. 

As the field of the dimensionality of industrial data gradually increases, traditional 

modeling approaches may not fully utilize the potential information included in the data, 

especially when dealing with high-dimensional datasets. Data augmentation techniques have 

been shown to effectively improve prediction accuracy when combined with machine learning 

techniques such as Principal Component Analysis (PCA) [2], Support Vector Machines (SVMs) 

[3] [4], and Linear Discriminant Analysis (LDA) [5]. Inspired by these studies, this paper comb- 
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Figure 1.  Diagram of the DAPLS modeling framework 

ines data augmentation techniques with Partial Least Squares (PLS) methods [6] [7]. Partial 

Least Squares Regression (PLSR) is a classical machine learning method used to model linear 

relationships between variables [8]. It is widely applied in modeling original data with small 

samples, high-dimensional features, while data augmentation can compensate for the 

insufficient sample size, as well as the imbalance of categories in the original data [9] [10] [11]. 

This study uses the Synthetic Minority Over-sampling Technique (SMOTE) [12] to address 

the problem of insufficient sample size and category imbalance. The amount of intrinsic 

irrelevant attributes in the data increases with dataset complexity when applying SMOTE to 

original data samples. This can adversely affect the accuracy of the categorization method [13]. 

It is crucial to automatically detect and prevent the impact of these factors on the categorization 

process. Therefore, the Value Difference Metric (VDM) [14] is also introduced to identify and 

evaluate which features are more critical for the effectiveness of the oversampling method. 

VDM, as a measure of sample similarity, aids in selecting neighboring samples with high 

similarity to the original samples, ensuring that the synthetic samples generated maintain the 

feature distribution and attributes of the original samples while minimizing overlap between 

synthetic and original samples [15]. Following the augmentation of the original data, the PLSR 

model is employed for mathematical modeling. During the model solving process, the objective 

function is solved using manifold optimization to achieve a more accurate numerical solution, 

which in turn enhances the model's classification and recognition performance. 

By integrating data augmentation techniques and partial least squares methods, the new 

model can better learn data features and improve the recognition capability for minority class 

samples. The new model not only demonstrates superior numerical solutions but also has better 

interpretability and efficiency, providing novel ideas and approaches for handling high-

dimensional data and uncovering latent information. Figure 1 illustrates the framework of the 

DAPLS model. 

The main contributions of this paper are as follows: 
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This paper combines data augmentation techniques with the PLSR model to improve the 

model's learning ability and classification performance on small samples and unbalanced 

category data. The Synthetic Minority Over-sampling Technique is used to generate synthetic 

samples and is combined with the Value Difference Metric to select similar neighboring 

samples, thereby improving the quality of the synthetic samples and effectively solving the 

problems of insufficient sample size and class imbalance. 

This paper proposes manifold optimization, which is an unconstrained optimization method 

in a restricted search space, to obtain more accurate numerical solutions of PLSR. 

The DAPLSR model is compared with five existing models on a public dataset and 

analyzed in terms of the effect of the number of different components retained on the 

performance of the model. The experimental results show that the proposed model has a 

significant advantage in classification performance, especially when dealing with unbalanced 

datasets. 

2. RELATED WORKS 

2.1. PLSR 

Suppose the training dataset consists of an input matrix 
( )

1 2, , , m N p

N p

 +

+
 =   X x x x . and 

an output matrix  1 2, , , n q

n

=  Y y y y , where m denotes the number of dimensions and n 

denotes the number of samples. 

To initially normalize the data, the data samples are removed by their average. X  and 

Y  are projected into a low-dimensional subspace by the PLSR model, which is defined by the 

latent variables T  and U  of X  and Y  [16]. The PLSR model is then used as the basis 

for the normalization of the data. Let 1t  and 1u  represent the initial pair of latent variables 

for X  and Y , respectfully. These variables can be written sas the following linear 

combinations: 

1 1

1 1

=

=

t Xw

u Yc
                              (1) 

the objective of PLSR is to ensure that 1t  and 1u  include the maximum amount of relevant 

information from the raw data, hence maximizing their relevance. As a result, the objective 

function can be calculated by first maximizing the covariance between 1t  and 1u  in PLS: 

1 1

T T

1 1 1 1

max ,

. . 1, 1= =

Xw Yc

s t w w c c
                       (2) 

where are the initial weight vectors, 1w  and 1c . 1w  and 1c  can be solved by solving for the 

eigenvectors corresponding to the largest eigenvalues of matrices 
T T

X YY X  and 
T T

Y XX Y , 

respectively, which in turn can be solved for 1t  and 1u  by using Eq.(1). This model allows 

the PLSR to be expressed as a pair of matrices, X and Y: 
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T

1 1 1

T

1 1 1

= +

= +

X t p E

Y u q F
                           (3) 

where the load vectors ( )
-1

T T

1 1 1 1=p X t t t  and ( )
-1

T T

1 1 1 1=q Y t t t  are calculated as regression 

coefficients of X  on t  and Y  on u , respectfully [17]. The method can be derived using 

the least squares approach. There are two residual matrices: E  and F . PLSR utilizes an 

iterative approach to the computation of latent variables [18], where the latent variables, or 

principal components, are repeatedly included in the model. 

T

1 1

T

1 1





= −

= −

X X t p

Y Y u q
                          (4) 

Following several iterations of the previously described steps, PLSR ultimately produced 

the following regression model: 

T

T

= +

= +

= +

X TP E

Y UQ F

Y XR F

                          (5) 

where T  and U  are the score X  and Y , matrix E  and matrix F  are the residual 

matrices and 
T=R WQ  can be thought of as a regression coefficient matrix. 

2.2. Data Augmentation 

In dealing with the problems of small sample size, large number of categories, and imbalance of 

categories, researchers and data scientists have used a variety of methods to improve the 

recognition performance of the models. One common approach is to expand the training dataset 

through data augmentation techniques, such as rotating, flipping, scaling, and other 

transformations to enhance the variety of samples. 

This approach can successfully mitigate the issue of inadequate samples and enhance the 

model's generalization capability. When the amount of data is much smaller than the model's 

demand for unknown sample space, the model's generalization effect may be affected. To solve 

this problem, data augmentation methods become an effective means. As in the case of 

Ensemble Learning, the prediction results of multiple base classifiers are combined to improve 

the overall classification performance. Common integration learning methods include Random 

Forest, Gradient Boosting Trees, and so on. These methods can effectively deal with category 

imbalance and small sample size to improve the robustness and precision of the model. Data 

augmentation methods simulate the original data to generate virtual data and labels. These are 

then added to the training dataset, thus increasing its size. 

Another common approach to data augmentation is to use training methods based on 

sample weights, such as oversampling and undersampling. Oversampling increases the 

proportion of minority class samples by replicating minority class samples or generating 

synthetic samples, while undersampling balances the number of samples in different classes by 

removing majority class samples. These methods can help the model learn better about the 

distribution of the data and improve the ability to recognize samples from minority classes. 
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SMOTE is an oversampling technique used to solve the problem of category imbalance 

[19]. In machine learning, category imbalance refers to a large gap in the number of samples 

from different categories in a dataset, which may lead to over-concentration of the model's 

learning on the majority category while ignoring the minority category [20]. The objective of 

SMOTE is to improve the model's prediction performance for the minority category by 

generating fresh samples of the minority category, thereby equalizing the distribution of 

samples across different categories. 

SMOTE does this by selecting a sample from a small number of categories as a benchmark 

sample. For the benchmark sample, its nearest neighbor is selected based on some distance 

metric (usually using Euclidean distance). For the selected baseline and nearest neighbor 

samples, a point is randomly selected on the connecting line between them as the newly 

synthesized sample. The eigenvalues of this new sample are obtained from the weighted average 

of the eigenvalues of the baseline and nearest neighbor samples, and the category label is the 

minority category. Repeat the resampling many times until a specified oversampling multiplier 

is reached. In this way, SMOTE allows the proportion of minority categories in the dataset to 

increase by generating new synthetic samples. This helps the model to learn the features of the 

minority categories better and improves the performance on the unbalanced dataset. 

3. DATA AUGMENTATION PARTIAL LEAST SQUARES REGRESSION 

The method described employs the SMOTE data augmentation methodology to generate more 

samples, thereby equalizing the quantity of samples across different categories in the dataset, 

and uses the VDM to calculate distances between attributes in order to allow the new data 

samples to maintain the feature distributions and variability of the original data. The sampled 

data sX  and sY  are used as new data samples, the covariance matrices of sX  and sY  are 

computed using the partial least square regression model. The PLS components are calculated 

by maximizing the covariance matrices of sX  and sY . In seeking to maximize the covariance 

matrices of sX  and sY , the local geometrical structure of the manifolds is exploited, and the 

use of manifold optimization techniques enables the objective function to obtain the maximum 

value on the manifolds, thereby enhancing the model's performance. 

1 2[ , ,..., ] n d

n

= X x x x , where n and d stand for the number of samples and sample 

features, is the representation of the sample input data matrix. The labeling matrix is represented 

as 1 2[ , ,..., ] n q

n

= Y y y y , where q denotes the quantity of sample categories, ix  denotes 

the first i  sample, and for each minority category sample ix , k similar samples centered on 

ix are selected, and the one sample as the reference sample. For each feature dimension j, a 

value difference metric matrix D  is used to determine the values of the synthetic samples 

based on the difference between the reference sample and the nearest neighbor sample, and then 

the dummy data are generated by interpolation operation. 

si i i 1 2 n{ s([x , x , , x ])}= +  − x x x                  (6) 

where ς  denotes a random number between (0,1) , and ( )s   refers to random sampling in 

the data sample. The newly generated samples and the original samples from the new data, so 

the data samples can be denoted as 
1

( )

1 2, ,..., ,..., ln m d

s si n m

+ 

+
 =  X x x x x  after random 

sampling, and the array of new sample labels generated using the k-nearest neighbor is 
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( )

1 2, ,..., ,..., l

l

n m q

s si n m

+ 

+
 =  Y y y y y , where 1m  denotes the number of freshly created 

samples. 

During the process of generating new data samples as described above, the Value 

Difference Metric Matrix D uses the Value Difference Metric, which helps SMOTE determine 

how to synthesize appropriate samples that maintain the characteristic distribution and 

variability of the original data. The distance between two feature values is ascertained by 

contrasting the class conditional probability distributions of each feature's values ai  and aj . 

This makes it different from other distance measures and provides an alternate way for 

calculating the distance between two symbolic values. 

0

2

2

( , ) ( , ) ( )

( , ) | ( | ) ( | ) |

( ) | ( | ) |

a a a
a

a a a

d

a

a a

i j i j i

i j i j

i i

 





=





=  

=  −

 = 
  

c C

c C

vdm

P c P c

P c

                  (7) 

( , )a ai j  indicates whether the values of feature i and feature j at position a are identical. 

If identical, ( , ) 0a ai j = ; if different, ( , ) 1a ai j = . C refers to the set of all class labels, 

( | )aiP c  refers to the class conditional probability of ai , and ( )ai  represents the weight of 

the feature i at position a , controlling the influence of each attribute distance in determining 

the final nearest neighbor. Since the values of ( , )a ai j  the range of values will vary from 0 

and 1, the weights can be used to limit that range, i.e., the range of the ( , ) ( )a a ai j i   will 

vary from 0 and ( )ai . The ( , )i jvdm  value is more significantly impacted by larger 

attribute distances than by smaller attribute distances. Therefore, when using smaller weights 

(i.e., when the values in the tested instance are not associated), the outcome of attribute 

distances tends to be tiny and does not significantly affect the selection of nearest neighbors. 

VDM leverages the weight of values to ascertain the capacity of specific attribute values to 

distinguish between class labels. Summing the difference metrics across all positions yields the 

feature i  and feature j  value difference metrics between them. 

After obtaining the value difference metric ( , )i jvdm  for each pair of features, all 

( , )i jvdm  values are compiled into a matrix D , where D  is a symmetric matrix with 

ij ji=D D . This matrix is utilized in SMOTE to aid in generating more representative and 

diverse synthetic samples. 

PLSR maximizes the covariance between the transformed X  and Y  by finding a linear 

transformation of X  and Y . The T  is obtained by principal component analysis (PCA) of 

X , which can be expressed as =T XW , where W  is the projection matrix of X  in the 

component space. Meanwhile, one of the most important modeling advantages of PLSR is to 

seek the optimal projection matrix to make the relationship between X  and Y  the closest by 

considering the projections of the independent variable and the dependent variable 

simultaneously. Then, according to the previous description, W  can be identified as the 

projection matrix of X  in the component space, and C  is the projection matrix of Y  in the 

component space, denoted as =U YC , which serves as the SIMPLSR model equivalent [21], 

and the following is the expression for the matching objective function: 
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T T

,
max tr( )

. . 

 

= =

W U

T T

W X YC

s t W W C C I

                          (8) 

Using the data-enhanced sample as the new input data for PLS, the new objective function 

can be expressed as:  

T Tmax  tr( )

. . 

s s

= =

W

T T

W X Y C

s t W W C C I

                        (9) 

This study utilizes the manifold optimization approach to solve the optimal solution of the 

objective function. In Eq.(9), the feasible regions for the projection matrices W  and C  can 

be regarded as a product manifold composed of an Oblique manifold and a generalized Stiefel 

manifold [22]. Consequently, the new objective function can be expressed in the following form: 

T T

,

T T T

T

max tr( )

. . 

diag( )

s s

= =

=

W C
W X Y C

s t T T W X XW I

C C I

                     (10) 

First, to calculate the objective function's gradient in Euclidean space with respect to the 

projection matrix W  of X : 

Tgrad ( )E s sf =W X Y C                       (11)  

Next, the gradient on the generalized Stiefel manifold is calculated: 

Tgrad ( ) grad ( ) Wsymm( Bgrad ( ))R E Ef f f= −W W W W         (12) 

The above equation is based on the gradient of the objective function in the Euclidean 

space, and the gradient projected to the tangent space by the projection operator is the gradient 

on the manifold. The above equation is based on the gradient of the objective function in the 

Euclidean space, and the gradient projected to the tangent space by the projection operator is the 

gradient on the manifold. Where the expression of the projection operator is 

 
T( ) Zsymm( )= −

W
W W Z BW , where B  is a symmetric positive definite matrix [23], 

and 
Tsymm( ) ( )/2= +A A A . 

In the process of solving the gradient descent on the manifold, the newly discovered points 

may not lie on the manifold. In such cases, the retraction operator x  is needed to project the 

points onto the manifold pointing from the tangent space [24], and the optimal projection matrix 

W  is obtained step by step according to the set step size. 

The optimized projection matrix W  is brought into the gradient formulation of the 

objective function with respect to the projection matrix Y  of C  in Euclidean space: 

T

s sgrad ( )E f =C Y X W                       (13) 
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Calculate the gradient over the Oblique manifold: 

Tgrad ( ) grad ( ) C diag( grad ( ))R E Ef f f= −C C C C            (14) 

Similar to the optimization process for the projection matrix W , the expression of the 

projection operator for the Oblique manifold tangent space is 
T

[ ]( ) diag( )= −C Z Z C C Z , The 

retraction operator x  is also needed to project the points onto the manifold pointing from the 

tangent space after a new point is found on the Oblique manifold, and the solution is iteratively 

solved until a minima is obtained, resulting in the optimal projection matrix C . 

Using the Alternating Direction Method of Multipliers (ADMM) [25]. The optimization of 

the projection matrices W  and C  is executed in the objective function. The optimal 

projection matrices W  and C  are computed, then PLSR is conducted using the obtained 

matrices W . With the use of manifold optimization, we suggest a data augmentation partial 

least squares technique in Algorithm 1. 

Algorithm 1 DAPLSR  

1: Initialize: 
n mX , 

n qY , number of iterations N , the gradient standardized tolerance 

1  and the step error 2 . Use the VDM to compute the value difference metric matrix D  for all 

features in the feature space 

2: Synthesizing new samples: For each category c  in the dataset, calculate its sample size cn , and 

determine the set of minority class samples minX  and the corresponding set of labels minY . For 

each minority class sample i minx X , find its k nearest neighbors. Generate synthetic samples 

based on its nearest neighbor samples and value difference metric matrix D . Generate new 

synthetic sample labels based on the minority sample labels 

3: Add the synthesized samples to the dataset to get new data samples sX  and data labels sY  

4: for j = 1: N do 

5:     for l = 1: N do 

6:         Calculate the objective function's gradient in Euclidean space with respect to the 

projection matrix W  of X : 
Tgrad ( ) 2E l s s lf =W X Y C  

7:         Compute the gradient of the objective function on the generalized Stiefel manifold, where 

[ ]W  is the projection matrix in tangent space: [ ]grad ( ) grad ( )R l E lf f= WW W  

8:         Calculate the conjugate direction: 
1 1-grad ( ) ( )

l ll R l l lf  
− → −= + W WW T  

9:         Setting the step size l :
T( ( ) ( ) tr((grad ( )) )

l l l l l R l lf f f    +WR W W  

10:        The loop is terminated when the condition is satisfied by ( )
ll l l = WW R , and 

1 1(grad ( )R lf + 
F

W , 1 2   and ll N  

11:     end for 

12:     Exports l=W W  

13:     for 1k = : 2N  do 

14:         Calculate the objective function's gradient in Euclidean space with respect to the 

projection matrix C  of Y : 
T

Egrad ( )k s sf =C Y X W  
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15:         Compute the gradient of the objective function on the generalized Stiefel manifold: 

[ ]grad ( ) grad ( )k C kf f C=C  

16:         Calculate the conjugate direction: 
1R 1-grad ( ) ( )

k Kk k l kf  
− → −= + C CC T  

17:         Setting the step size ka : 
T( ( ) ( ) tr((grad ( )) )

lk k k k k k kf f f    + RR C C  

18:         The loop is terminated when the condition is satisfied by C ( )
kk k k =C R  and 

R 1 1 2||(grad ( ) || ,  k kf +  FC  and 2k N  

19:     end for 

20:     Exports k=C C  

21: end for 

22: Calculate: = sT X W     T T 1( )−= sP X T T T     T T 1( )−= sQ Y T T T  

Output: s=Y X WQ  

 

4. EXPERIMENTS 

This study conducts experiments on the EYaleB dataset, COIL-20 object dataset, USPS 

handwritten digit dataset, and Brodatz texture dataset. Using classification accuracy, G-mean, F-

measure, Precision, and Recall as metrics, the proposed method's performance is thoroughly 

assessed. The experimental procedure selects five models—NIPALS [26], PolyPLSR [27], 

SIMPLSR, SPLPLSR [28], and PLSRGGR [29]—as benchmark models for assessing the 

classification performance of the proposed model on various public datasets. 

The MATLAB 2019b software platform is utilized for all experiments, which are executed 

on a high-performance computing environment that is outfitted with an Intel E5 2620 CPU and 

up to 128 GB RAM. This robust computational assistance guarantees the precision and 

dependability of the experimental outcomes. To ensure fairness, the number of components for 

different models is kept consistent across each dataset for rigorous experimental comparison. 

Evaluation metrics are compared only when all methods demonstrate satisfactory performance. 

Each experiment is repeated five times, and the average of these five results is taken as the final 

evaluation basis to ensure stability and reliability. 

4.1. Evaluation indicators 

In classifier evaluation, the confusion matrix is a commonly used tool that provides a detailed 

analysis of classifier performance. 

The confusion matrix includes four key metrics: TN (True Negatives) refers to the number 

of correctly categorized negative samples, FP (False Positives) represents the number of 

negative samples incorrectly categorized as positive, FN (False Negatives) denotes the number 

of positive samples that are incorrectly classified as negative. TP (True Positives) indicates the 

number of samples that are correctly classified. 

In multicategorization problems, these metrics are interpreted slightly differently. TP 

denotes the count of properly predicted minority samples, TN denotes the count of erroneously 

forecasted majority samples, FP denotes the count of mistakenly predicted majority samples, 

and FN denotes the count of incorrectly predicted minority samples. Metrics such as the 

confusion matrix and accuracy can provide a thorough evaluation of the classifier's performance, 

allowing us to get a more profound comprehension of the model's predictive effectiveness. The 

accuracy rate can be represented using the following equation: 
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TP TN
Accuracy

TP FP TN FN

+
=

+ + +
                  (15) 

Mean (Geometric Mean) is an evaluation metric more applicable to unbalanced datasets. It 

combines the performance of the model in predicting the majority sample class as well as the 

minority sample class, and evaluates the overall performance of the model through the 

geometric mean between these two. The formula for G-Mean is as follows: 

G-Mean (Sensitivity Specificity)=                 (16) 

where Sensitivity (also known as Recall) is a measure of the model's capacity to recognize a 

small number of samples, and Specificity (also known as true-negative) measures the model's 

ability to recognize a large number of samples. These indicators are computed using the 

following formulas: 

TP
Sensitivity

TP FN

TN
Specificity

FP TN

=
+

=
+

                       (17) 

Precision is a quantitative measure utilized to evaluate the efficiency of a classification 

model. It specifically measures the proportion of predicted positive examples that are actually 

positive cases. Precision has a value between 0 and 1, and the closer it is to 1, the better the 

model predicts positive cases. Precision is calculated as follows: 

TP
Precision

TP FP
=

+
                     （18） 

Recall values are calculated in a manner comparable to sensitivity, with a range of 0 to 1. 

The model performs better at predicting positive instances when the value is closer to 1. 

TP
Recall

TP FN
=

+
                      （19） 

The F-measure, which is a weighted summed average of Precision and Recall, is used to 

analyze the classification model's performance and aids in a more thorough evaluation of the 

model's performance in various application scenarios. The calculation is performed in the 

following manner: 

Precision Recall
F-measure 2 ( )

Precision Recall


= 

+
             （20） 

The F-measure is a numerical value that runs from 0 to 1. Higher values indicate that the 

model achieves a better balance between Precision and Recall. Because it is a harmonic mean, 

the F-measure will be more sensitive to the smaller of the two values, so it provides a 

comprehensive metric when the model needs to balance Precision and Recall. 

4.2. Introduction to the dataset 

4.2.1. Face 

For the comparison experiments, the Extended Yale Face Database B (EYaleB) dataset [30] is 

employed for the face classification task. During the experiment, 75% of the photos are 

allocated as training samples, while the remaining 25% are designated as testing samples. 

Samples from the dataset's 38 categories or persons are randomly chosen for training, with the 

unselected samples being used for testing, to mimic class imbalance in real-world applications. 
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To ensure consistency in processing, all images are vectorized and shrunk to 32 × 32 pixels 

before to the experiment. This results in 1024 feature components per sample. 

4.2.2. Object 

To verify the model's effectiveness in object image classification tasks, the dataset utilized is the 

Columbia Object Image Library (COIL-20) [31]. The dataset contains 20 object categories, each 

with 72 corresponding images. In the experiment, a varying number of images from each 

category are randomly selected as training and testing samples, ensuring a constant total sample 

number. 

4.2.3. Handwritten digits 

In addition to object and face image datasets, this study extends the experiment by selecting the 

USPS dataset [32] for the task of classifying handwritten digits. For the USPS dataset, a rich 

experimental sample set is constructed by randomly selecting 300 images from the original 

image samples in each category 0-9, with the number of samples in each category selected at 

random. Keeping in line with the previous processing, the number of features of each image is 

transformed into a 256-dimensional vector in the experiment for model training and recognition. 

To ensure a thorough assessment of the model's performance, the dataset is randomly split into 

two portions: one half is allocated for training, and the other half is reserved for testing. 

4.2.4. Texture 

The experiment assesses the efficacy of the model by subjecting it to a texture classification task, 

specifically employing the Brodatz dataset [33]. The Brodatz texture collection has 999 texture 

photos, which are categorized into 111 distinct categories, each containing 9 images. The 

images depict a diverse range of all-natural substances, including wood, stone, grass, and bark, 

as well as man-made substances like paper, gauze, and silk screen. During the experimental 

preparation phase, a certain number of images are randomly selected from each of the 111 

categories of original image samples as training samples, with the remaining images serving as 

testing samples. The ratio of training to testing samples is set at 6:3 to simulate the distribution 

that may occur in real-world applications. Similarly, each sample image is converted into an 

1180-dimensional vector to enable effective feature extraction and classification by the model. 

4.3. Analysis of experimental results 

Table 1 presents the classification outcomes of the DAPLSR model and its comparative 

methods on the EYaleB dataset, retaining different numbers of features. The bold numbers 

indicate the best results in the comparative experiments. On the EYaleB dataset, the suggested 

solution regularly performs better than alternative approaches in terms of classification error 

rates. Strong performance of the DAPLSR model is found to be maintained when the number of 

retained characteristics rises. Notably, when retaining 34 components, the proposed model's 

classification error rate is reduced by approximately 0.51% compared to the model without data 

augmentation, demonstrating the efficacy of incorporating data augmentation techniques in 

enhancing classification efficiency. 

Table 1.  EYaleB Dataset Classification Error Rates 

c 20 22 24 26 28 30 32 34 

NIPALS 0.4780 0.4475 0.3729 0.3492 0.3644 0.3339 0.3288 0.3102 

PolyPLSR 0.4508 0.4068 0.3763 0.3441 0.3305 0.2949 0.2898 0.2864 

SIMPLSR 0.3797 0.3475 0.339 0.3119 0.2898 0.2746 0.2627 0.2559 

SPLPLSR 0.3169 0.2814 0.2593 0.2373 0.2339 0.1966 0.2000 0.1814 

PLSRGGR 0.1542 0.1220 0.1186 0.0915 0.0729 0.0492 0.0441 0.0322 

DAPLSR 0.1441 0.0932  0.0712 0.0712 0.0407 0.0356 0.0407 0.0271 
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Table 2 illustrates the accuracy, G-mean, Precision, Recall, and F-measure values for 

various approaches on the EYaleB dataset. The outcomes demonstrate that the model described 

in this study maintains high values for all other metrics while maintaining high classification 

accuracy on the EYaleB dataset classification task, and all other metrics outperform the 

benchmark methods. These results underscore the effectiveness and feasibility of integrating 

data augmentation techniques, highlighting the stability and advantage of the DAPLSR model in 

handling face data classification tasks. 

Table 2.  EYaleB Dataset Performance Metrics 

Method Accuracy G-mean Precision Recall F-measure 

NIPALS 0.6661 0.8042 0.7959 0.6718 0.6886 

PolyPLSR 0.7051 0.8307 0.8200 0.7107 0.7254 

SIMPLSR 0.8153 0.8960 0.8455 0.8182 0.8117 

SPLPLSR 0.7983 0.8856 0.8275 0.8010 0.7949 

PLSRGGR 0.9441 0.9639 0.9565 0.9456 0.9365 

DAPLSR 0.9627 0.9806 0.9657 0.9637 0.9626 

 

Table 3 shows that on the COIL-20 dataset, the proposed DAPLSR model generally yields 

better recognition and classification results for objects across different numbers of retained 

components compared to other methods. Specifically, when retaining 15 components, the 

classification error rate decreases by 2.36% compared to the second-best model. With 21 

components, while the second-best model achieves its lowest classification error rate of 2.92%, 

the proposed model further reduces the error rate by 0.14%. These findings indicate that 

applying data augmentation to the PLSR model significantly reduces classification error rates 

and enhances classification performance. 

Table 3.  COIL-20 Dataset Classification Error Rates 

c 13 15 17 19 21 23 

NIPALS 0.2111 0.2319 0.1792 0.1861 0.1542 0.1347 

PolyPLSR 0.1736 0.1708 0.1333 0.1250 0.0986 0.0986 

SIMPLSR 0.1792 0.1486 0.1306 0.1194 0.0833 0.0681 

SPLPLSR 0.1861 0.1722 0.1264 0.1153 0.1028 0.0750 

PLSRGGR 0.1000 0.0903 0.0986 0.0292 0.0292 0.0306 

DAPLSR 0.0917 0.0667 0.0694 0.0292 0.0278 0.0278 

 

To better analyze model performance, the proposed model and other comparative methods 

are evaluated on the COIL-20 dataset using several performance metrics. Table 4 clearly 

presents these comparative results, with the best performance highlighted in bold. In the 

DAPLSR model experiments, the original samples are augmented by 120%. A detailed 

comparison reveals that the data augmentation-based model exhibits higher accuracy and 

superior performance in object image recognition tasks, significantly outperforming other 

methods. This finding validates the effectiveness of data augmentation in enhancing model 

performance and provides strong support for future research. 
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Figure 2.  (a) COIL-20, (b) USPS, (c) Brodatz, and (d) EYaleB datasets show classification 

error rate line charts for different methods, where lower values indicate better model 

performance 

Table 4.  COIL-20 Dataset Performance Metrics 

Method Accuracy G-mean Precision Recall F-measure 

NIPALS 0.8222 0.8838 0.8506 0.8222 0.8021 

PolyPLSR 0.8847 0.9289 0.9003 0.8847 0.8736 

SIMPLSR 0.8944 0.9342 0.9085 0.8944 0.8830 

SPLPLSR 0.8958 0.9365 0.9070 0.8958 0.8857 

PLSRGGR 0.9486 0.9716 0.9532 0.9486 0.9478 

DAPLSR 0.9694 0.9833 0.9704 0.9694 0.9690 

 

Additionally, experiments are conducted on the USPS handwritten digit dataset. During the 

DAPLSR model experiments, SMOTE is used to oversample the original samples, increasing 

the sample size by 40%. The categorization outcomes are displayed in Table 5. 

Table 5.  USPS Dataset Classification Error Rates 

c 6 8 10 12 14 16 18 

NIPALS 0.2962 0.2473 0.2058 0.1969 0.1832 0.1760 0.1617 

PolyPLSR 0.2843 0.2311 0.1762 0.1658 0.1743 0.1623 0.1611 

SIMPLSR 0.2883 0.2737 0.1925 0.1874 0.1739 0.1650 0.1587 

SPLPLSR 0.2528 0.2328 0.2210 0.2082 0.1979 0.1628 0.1526 

PLSRGGR 0.2707 0.2213 0.1533 0.1573 0.1560 0.1553 0.1560 

DAPLSR 0.2180 0.1460 0.1393 0.1400 0.1407 0.1420 0.1407 
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Figure 3.  shows the results of different models on the USPS, COIL-20, EYaleB, and Brodatz 

datasets for (a) G-mean, (b) Precision, (c) Recall, and (d) F-measure. Higher values indicate 

better model performance 

According to the experimental findings, the proposed DAPLSR model provides reduced 

classification error rates for the chosen component count. For instance, when retaining 12 

components, the classification error rate is reduced by 1.73% compared to the second-best 

method. This demonstrates the value of data augmentation in predictive models. The 

classification performance is significantly improved when the PLSR model and data 

augmentation techniques are combined. This result not only emphasizes the critical role of data 

augmentation in enhancing model performance but also validates the model's generalization 

capability. 

In addition, Table 6 presents other evaluation metrics for the comparative methods on the 

USPS dataset. The proposed model generally achieves the best results among the comparative 

methods, further confirming that the data augmentation-based partial least squares model 

exhibits superior classification performance in handwritten digit classification tasks. 

Table 6.  USPS Dataset Performance Metrics 

Method Accuracy G-mean Precision Recall F-measure 

NIPALS 0.8027 0.8833 0.8044 0.8037 0.8013 

PolyPLSR 0.8120 0.8877 0.8115 0.8102 0.8090 

SIMPLSR 0.8187 0.8922 0.8190 0.8177 0.8160 

SPLPLSR 0.7908 0.8357 0.7634 0.7992 0.7547 

PLSRGGR 0.8440 0.9085 0.8431 0.8444 0.8420 

DAPLSR 0.8520 0.9120 0.8534 0.8499 0.8495 
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Table 7 presents the experimental results of the DAPLSR model and its comparative 

methods on the Brodatz texture dataset. The data indicate that the proposed DAPLSR model 

achieves superior classification performance compared to other models. It can be inferred that 

incorporating data augmentation techniques into the PLSR model enhances sample domain 

diversity and compensates for potential information loss in PLSR applications. 

Table 7.  Brodatz Dataset Classification Error Rates 

c 30 60 90 120 150 

NIPALS 0.3986 0.2074 0.1901 0.1240 0.1040 

PolyPLSR 0.3975 0.2235 0.1675 0.1347 0.0984 

SIMPLSR 0.4038 0.1972 0.1833 0.1543 0.1243 

SPLPLSR 0.4106 0.2358 0.1576 0.1261 0.1161 

PLSRGGR 0.3814 0.1832 0.1441 0.1051 0.0901 

DAPLSR 0.3724 0.1742 0.1381 0.1021 0.0811 

 

Table 8 reveals that increasing the number of data samples improves classification 

accuracy and reduces error rates. This analysis highlights the importance of sample diversity in 

improving model performance on texture datasets. Particularly for complex datasets, increasing 

the number of samples can significantly enhance classification accuracy. The superior 

performance of the DAPLSR model on the Brodatz dataset further validates its effectiveness in 

texture classification tasks. 

Table 8.  Brodatz Dataset Performance Metrics 

Method Accuracy G-mean Precision Recall F-measure 

NIPALS 0.8258 0.8511 0.7876 0.8258 0.7906 

PolyPLSR 0.8438 0.8763 0.8392 0.8438 0.8197 

SIMPLSR 0.8408 0.8717 0.8241 0.8408 0.8132 

SPLPLSR 0.8378 0.8660 0.8148 0.8378 0.8082 

PLSRGGR 0.8499 0.8833 0.8365 0.8498 0.8241 

DAPLS 0.8589  0.8893 0.8549 0.8588 0.8371 

 

5. CONCLUSION 

This paper proposes a novel data augmentation Partial Least Squares Regression model via 

manifold optimization. The DAPLSR model employs data augmentation to enrich the dataset, 

thereby enhancing the model's classification performance and generalization capability. 

Concurrently, the local geometric structure of the manifold is exploited, and a manifold 

optimization method is introduced to solve the proposed objective function, resulting in the 

optimal projection matrix. This process further refines all factors within the PLSR model, 

thereby improving its overall performance. The proposed DAPLSR model demonstrates 

superior classification performance and remarkable evaluation metrics on the EYaleB, COIL-20, 

USPS, and Brodatz texture datasets, significantly surpassing existing methods. 
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