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ABSTRACT 
 
Seismic signal classification plays a crucial role in mitigating the impact of seismic events 

on human lives and infrastructure. Traditional methods in seismic hazard assessment often 

overlook the inherent uncertainties associated with the prediction of this complex 

geological phenomenon. This work introduces a probabilistic framework that leverages 

Bayesian principles to model and quantify uncertainty in seismic signal classification by 

applying a Bayesian Convolutional Neural Network (BCNN). The BCNN was trained on a 

dataset that comprises waveforms detected in the Southern California region and achieved 

an accuracy of 99.1%. Monte Carlo Sampling subsequently creates a 95% prediction 
interval for probabilities that considers epistemic and aleatoric uncertainties. The ability to 

visualize both aleatoric and epistemic uncertainties provides decision-makers with 

information to determine the reliability of seismic signal classifications. Further, the use of 

Bayesian CNN for seismic signal classification provides a more robust foundation for 

decision-making and risk assessment in earthquake-prone regions. 
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1. INTRODUCTION 
 

In seismology, one of the critical challenges lies in effectively distinguishing seismic signals 

from noise, particularly amidst uncertain and complex environmental conditions [1], [2]. The 
overlapping spectral characteristics of signals and noise, along with uncertainties in data 

acquisition, make discrimination difficult and can lead to false alarms or missed events, 

impacting seismic monitoring systems and critical applications like earthquake early warning and 
hazard assessment [3].Moreover, the lack of uncertainty quantification limits the interpretability 

and trustworthiness of discrimination outcomes, hindering the broader acceptance and adoption 

of automated seismic data analysis techniques (Figure 1). 
 

Further, the lack of uncertainty awareness in seismic signal classification models compounds the 

data scarcity and distributional shifts challenges. In real-world settings, seismic datasets are often 

characterized by their limited size, heterogeneous distribution, and inherent class imbalances [4], 
[5]. Despite wide acceptance of neural network models for classifications of above datasets, 

traditional CNNs trained on such datasets are susceptible to overfitting and poor generalization 

performance, particularly when confronted with unseen or anomalous seismic events [6]. 
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Figure 1 (a) and Figure 1 (b) demonstrate that earthquake and noise waveforms show unique 
characteristics that can be learned by a neural network and can be used later to distinguish 

between them. However, in some cases, both classes display characteristics that are harder to 

distinguish as seen in Figure 1 (c) and Figure 1 (d), which may lead to an incorrect classification. 

In such cases, it becomes essential to have a model that can express the uncertainty associated 
with its prediction. 

 

This study proposes a novel approach for uncertainty-aware seismic signal/noise discrimination 
using Bayesian CNNs. Bayesian neural networks (BNNs) provide a principled approach to 

quantifying uncertainty in neural network predictions by modeling uncertainty as a distribution 

over model parameters [7]. This stands in contrast to traditional neural networks, where point 
estimates of parameters are used. By representing uncertainty as a distribution, BNNs enable the 

estimation of both aleatoric and epistemic uncertainty, specific to seismic signals [8]. Epistemic 

uncertainty, also known as model uncertainty, arises from limited knowledge about the true 

underlying data distribution. On the other hand, Aleatoric uncertainty stems from inherent 
randomness or variability in the data itself. Uncertainty quantification is a critical aspect of 

predictive modeling, especially in domains where decisions are made based on model outputs [9]. 

This study leverages specialized layers such as Conv1DFlipout and DenseFlipout for quantifying 
uncertainty in predictions.  Conv1DFlipout and DenseFlipout are variational inference layers, that 

provide a computationally efficient way to estimate uncertainty in neural network predictions by 

treating weights as random variables with distributions, rather than fixed parameters. By treating 
model weights as probabilistic variables, Bayesian CNNs capture the uncertainty inherent in the 

classification task, providing reasonably accurate predictions based on probabilistic estimates of 

confidence. When the model’s confidence for a prediction falls below a set threshold (say 95%), 

decision-makers can consult other sources of information. 
 

Methodology of model including design of the Bayesian CNN architecture, details of the 

performance metrics of the model, modelling techniques used for uncertainty quantifications and 
the results obtained are discussed hereunder. 

 

 
 

Figure 1. Example ground velocity waveform time series: (a) and (c) correspond to earthquake waveforms, 

while (b) and (d) correspond to noise waveforms [SCEDC dataset]. For all diagrams,the x-axis represents 

the time elapsed (in seconds), while the y-axis indicates the amplitude (in m/s), which reflects the velocity 

of ground motion and the energy of thewaves. 
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2. METHODOLOGY 
 
Data is crucial in machine learning, as its quantity, quality, and reliability significantly affect 

algorithm accuracy. Furthermore, the architecture of the machine learning model must account 

for the characteristics of the data used. This section delineates the comprehensive methodological 

framework adopted to develop and validate the Bayesian Convolutional Neural Network (BCNN) 
for seismic signal classification. The section begins with an exhaustive description of the dataset 

sourced from the South California Earthquake Data Centre, detailing its structure and the 

rigorous criteria for data selection and preprocessing, which ensure high quality and reliability. 
Following the data description,the BCNN architecture is elaborated upon, emphasizing the 

incorporation of Flipout layers to capture epistemic and aleatoric uncertainties. Finally, the 

training procedure is outlined, including specific optimization strategies, loss functions, and 

regularization techniques employed to enhance model performance and generalization. 
 

2.1. Data Description 
 

The dataset used for the study was selected from the South California Earthquake Data Centre 

(SCEDC) [10] website which contains earthquake records from the Southern California Seismic 

Network (SCSN) [11]. Figure 2 illustrates the geographic area covered by the SCSN and the 
locations of the seismic stations from which the data was recorded. The dataset is divided into 

two distinct folders: "quake" and "noise," containing seismic waveforms corresponding to 

earthquake events and non-earthquake (noise) signals, respectively. The quake dataset contains 
broadband and strong motion records and has 1,07,318 records from January 1990to November 

2016. These records have magnitudes Mw 4.0–7.3 and hypocentral distances from 0 to 360 km. 

Noise dataset has 9,45,571 records from June 2015 to December 2017, comprises impulsive 
onsets identified by the short-term average/long-term average (STA/LTA) filter employed by the 

OnSite Algorithm [12], an integral component of the ShakeAlert EEW system [13], [14], 

designed for the U.S. West Coast. Data integrity is ensured by the curators by explicitly removing 

any impulsive onset detections occurring within a 2-minute window of earthquake occurrences 
listed within the SCEDC catalog [Southern California Earthquake Center, 2013]. This 

precautionary step aims to mitigate the inadvertent inclusion of seismic events within the noise 

dataset. Additionally, the presence of potential uncatalogued earthquakes within the noise dataset 
is reported. 

 

The selected quake and noise datasets consist of detailed recordings of ground velocity 

waveforms. Each recording, or time series, lasts for 6 seconds and measures ground velocity in 
three directions: North (N), East (E), and Vertical (Z). These recordings are made at a resolution 

of 100 sps (samples per second); each second of the record contains 100 data points for each 

direction. Further, each record in the datasets is organized as a 2D array, where one dimension 
represents time (with 600 data points) and the other dimension represents the three directions (N, 

E, and Z). Each time series records data from 2 seconds before impulsive signal onset to 4 

seconds after the onset. While the model is trained on waveforms that are 6 seconds long, its 
applicability extends to longer waveforms by employing a sliding window approach, which is 

detailed in Section 3.3. 

 

Of the 9,45,571 noise records, only 1,07,318 records were picked in this study, to be in line with 
number of quake records used for the training. These records were randomly selected from those 

noise records with a non-zero q value.  q value indicates the degree of belief that the signal is a 

local earthquake signal. The OnSite Algorithm assigns this value after computing peak 
amplitudes and predominant period estimates. Noise records with non-zero q values were picked 

for training, indicative that the OnSite algorithm had falsely classified a noise signal as an 



International Journal on Cybernetics & Informatics (IJCI) Vol.13, No.5, October 2024 

210 

earthquake signal. This also suggests difficulty in classifying these signals. Training the model on 
these records ensures better classification capability of the model compared to OnSite Algorithm. 

 
Figure 2. Map of the South California Seismic Network (SCSN). The figure shows the geographic area 

within which all seismic waveforms used in this study were recorded. Red triangles mark the locations of 

the seismic stations. Picture Credits: SCSN. 

 

2.2. Model Architecture 
 

The Bayesian Convolutional Neural Network architecture employed in this study is modified to 

include uncertainty-aware seismic signal/noise discrimination [15]. The BCNN architecture 
comprises three convolutional layers, two fully connected layers, and an output layer. The first, 

second, and third convolutional layers comprise 32,64 and 128 neurons, respectively. The fully 

connected layers have 80 neurons each. The output layer has two neurons corresponding to the 
two classes, quake and noise. Each convolutional layer is designed with increasing neuron counts 

to capture hierarchical features from the input seismic waveform data, leveraging their capacity 

to extract spatial and temporal patterns inherent in seismic signals [16]. The filter width used in 
the convolutional layers is 16, and the activation function used is the Rectified Linear Unit 

(ReLU) function to introduce nonlinearity to the model. The output layer uses softmax activation 

with two neurons, facilitating binary classification, where one unit represents earthquake signals, 

and the other represents non-earthquake (noise) signals. 
 

A distinctive aspect of the BCNN architecture adopted in this study lies in the integration of 

probabilistic modeling using Flipout layers [17], replacing the standard convolutional and dense 
layers. These Flipoutlayers, implement variational inference techniques, allowing the 

representation of weights as probability distributions rather than fixed values [17]. By treating the 

weights probabilistically, the model can inherently capture uncertainty in its parameters, thus 

providing a principled approach to uncertainty-aware seismic signal classification. Incorporation 
of Flipout layers facilitates estimation of posterior distributions over model parameters, a process 

essential for quantifying uncertainty in predictions. By modelling weight parameters as 

probability distributions, the BCNN inherently accounts for epistemic uncertainty, arising from 
limited data availability and model assumptions, and aleatoric uncertainty, stemming from 

inherent randomness in the observed data [18]. Further, incorporating Flipout layers at the outset 

and output layers transform the BCNN into a probabilistic model, enabling robust uncertainty 
quantification throughout the classification process. Specifically, the Convolution1Dflipout layer 

utilized in the first convolutional layer and the DenseFlipout layer employed in the output layer 

allow the representation of weight parameters as probability distributions rather than fixed values. 
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This probabilistic treatment of weights enables the model to capture the inherent uncertainty in 
the seismic data, thus providing richer and more reliable predictions. Furthermore, to regularize 

the learning process and guide the Bayesian model, the Kullback-Leibler (KL) divergence was 

incorporated as a regularization term in the training objective [19]. The KL divergence function is 

defined as: 
 

             𝐷𝐾𝐿(𝑞||𝑝) =
1

𝑁
∑ 𝑞(𝑖) log (

𝑞(𝑖)

𝑝(𝑖)
)

𝑖

                                                           (1) 

 

where q represents the target distribution, p predicted distribution, and N number of training 
samples. The function returns the KL divergence normalized by the number of training samples. 

Normalizing the KL divergence by the number of training samples ensures that the optimization 

process is robust to variations in dataset size. It prevents the divergence measure from being 
disproportionately influenced by the dataset scale, thus promoting more stable and reliable 

training dynamics. 

 

Training the BCNN involves optimizing model parameters using stochastic gradient descent with 
backpropagation [20]. The training objective is to minimize the categorical cross-entropy loss 

function, augmented by an additional regularization term based on the Kullback-Leibler (KL) 

divergence: 

 

                                         𝐿 =  −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐 log(𝑜𝑖,𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

+ 𝜆 ∙ 𝐾𝐿(𝑄(𝑊)||𝑃(𝑊))                          (2) 

 

where N is the number of samples, C number of classes, yi,c the true label, oi,c the predicted 
probability, Q(W) variational distribution, P(W) prior distribution, and λ regularization parameter. 

The inclusion of the KL divergence term in the loss function ensures that the model not only fits 

the data but also generalizes well and captures the inherent uncertainty in the learned parameters. 

The choice of an Adaptive Moment estimation (Adam) optimizer with a learning rate of α = 
0.001 is motivated by its effectiveness in handling sparse gradients and adapting learning rates on 

a per-parameter basis [21]. 

 
Total number of trainable parameters for the BCNN is 58,67,458. The model was trained for 40 

epochs, and the batch size used during training was 48. The dataset was split into training and test 

sets in an 80:20 ratio to evaluate model performance. Special attention was dedicated to preparing 
the train and test datasets for the quake records, prioritizing the preservation of independence 

among subsets. Rigorous measures were implemented to ensure that each subset comprised 

records exclusively associated with distinct earthquake events.This separation was critical to 

avoid any potential data leakage between training and test sets, which could otherwise lead to 
overly optimistic performance estimates. Additionally, such careful partitioning supports the 

model’s ability to generalize to unseen seismic events, enhancing its robustness and reliability in 

real-world applications. 
 

Integrating the Bayesian Convolutional Neural Network (BCNN) architecture with seismic data 

presented several challenges,particularly related to capturing complex seismic patterns.Seismic 

waveforms exhibit temporal and spatial complexities, influenced by various factors such as 
earthquake magnitude, depth, and hypocentral distance. Seismic data is inherently temporal, and 

BCNNs must account for temporal correlations effectively. Accurately capturing these complex 

patterns, while simultaneously accounting for the uncertainties within the data, required careful 
design of the convolutional layers. The BCNN’s hierarchical feature extraction was tuned to 
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effectively model both the fine-grained and large-scale temporal dependencies present in seismic 
signals, ensuring that critical features were not lost during the classification process.These 

challenges underscore the complexity of integrating BCNNs with seismic data but were crucial in 

ensuring that the model captured the necessary uncertainties in seismic data while maintaining 

high predictive performance. 
 

3. DISCUSSION OF RESULTS 
 

This section presents a comprehensive evaluation of the Bayesian Convolutional Neural Network 
(BCNN) developed for seismic signal classification. The exploration of uncertainty 

quantification, a critical aspect in seismic applications, is undertaken by analyzing both epistemic 

and aleatoric uncertainties. This assessment allows for evaluating the model's confidence and 

reliability in its predictions. Additionally, the implementation of a sliding window approach to 
extend the model's predictive capabilities to longer waveforms is discussed, showcasing the 

practical applicability of the model in real-world seismic monitoring scenarios. 

 

3.1. Accuracy, Precision and Recall 
 

For each given record in the test dataset, the BCNN predicts the probability of the given 
waveform being an earthquake signal, and it provides a probability distribution over the two 

classes (quake and noise) as output. It was noted that the model assigns a very high probability 

(close to 1) to the correct class for most records. And, the model demonstrates a high prediction 
accuracy of 99.1% on the test dataset. Also, it was observed that the rise in accuracy until epoch 

18 is minimal, after which it increased steeply. In addition, losses reduced as a consequence 

(Figure 3). 
 

Another important evaluation metric to consider especially in the context of seismic signal 

classification is a precision-recall curve. Precision is the ratio of true positive predictions to the 

total number of positive predictions made by the model. It measures how many of the predicted 
positive instances are positive. Precision is calculated as: 

 

TP / (TP + TF)   (3) 
 

where TP is the number of true positives and FP number of false positives. On the other hand, 

recall is the ratio of true positive predictions to the total number of actual positiveinstances in the 

data. It measures how many of the actual positive instances the model can correctly identify. 
Recall is calculated as: 

TP / (TP + FN)   (4) 

 
where FN is the number of false negatives. Each point on the precision-recall curve represents a 

different threshold for classifying instances as quake or noise. It can be observed from the plot in 

Figure 4 that there is an inherent trade-off between precision and recall, and the model maintains 
good recall even at relatively higher thresholds. At higher thresholds, the model becomes more 

conservative in its predictions, leading to higher precision but potentially lower recall. This is 

because the model only classifies instances as an earthquake if it's more confident of being the 

quake class. This reduces false positives (noise signals being incorrectly labeled as quake) but 
may also increase false negatives (quake signals erroneously labeled as noise), leading to adverse 

consequences. Hence, understanding the precision-recall trade-off and choosing the correct 

threshold value are crucial decisions to be made by decision-makers. 
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In seismic monitoring, particularly for detecting low-magnitude events, the balance between 
precision and recall becomes increasingly crucial. These low-magnitude signals, often early 

indicators of larger seismic activity, are subtle and frequently obscured by noise, making them 

prone to misclassification.For example, when precision is prioritized, decision-makers may 

reduce false alarms by ensuring that only highly certain signals are classified as earthquakes. 
However, this comes at the cost of missing low-magnitude events, which could be crucial for 

understanding seismic activity patterns. Conversely, if recall is emphasized, the system will 

identify more potential seismic events, but at the risk of increased false alarms, which undermine 
the reliability of the system and cause decision-makers to dismiss important warnings due to the 

volume of false alarms. 

 
Choosing the correct threshold thus becomes vital, particularly when considering the operational 

needs of seismic networks. For low-magnitude events, a balanced approach may involve a 

threshold that maintains higher recall to avoid missing critical detections, while accepting a 

manageable increase in false positives. Fine-tuning this balance could involve deploying 
complementary filters or post-processing techniques to reduce the impact of noise in low-

magnitude event detection. This approach ensures that even subtle earthquake signals are 

captured while mitigating false alarms. 
 

For further evaluation, a confusion matrix was constructed to visualize the classification 

performance. It provides a detailed breakdown of the model's predictions and the actual class 
labels. This helps in evaluating the model's performance. It can be inferred from the matrix 

shown in Figure 5, that the model performs remarkably well with high accuracy, precision, and 

recall. Despite the overall strong performance, a detailed analysis of error types revealed a 

tendency for the model to misclassify certain seismic events as noise (false negatives) and 
occasional misclassification of non-seismic signals as quake (false positives). These errors may 

have implications for real-time earthquake detection systems, necessitating further investigation 

into model refinement and feature engineering techniques. This could include adjusting decision 
thresholds, incorporating additional seismic features, and enhancing data preprocessing methods 

to improve the model’s robustness and accuracy. 

 

3.2. Uncertainty Modelling 
 

In the context of seismic signal/noise discrimination using Bayesian Convolutional Neural 
Networks (BCNNs) and understanding and characterizing uncertainty can provide insights into 

the reliability and robustness of model predictions. In the context of BCNNs, epistemic 

uncertainty reflects the variability in model parameters that could result from different training 

datasets or architectural choices. It can be inherently reduced with more data or model 
refinement. Aleatoric uncertainty captures uncertainty that cannot be mitigated even with infinite 

data or perfect model knowledge. In seismic signal/noise discrimination, aleatoric uncertainty 

may arise due to variations in seismic signals, noise interference, or measurement errors. 
 

Uncertainty analysis is performed post-training to assess the model's confidence in its 

predictions. The methodology involves generating multiple Monte Carlo samples from the 
trained BCNN model to capture the uncertainty inherent in the model's parameters and 

architecture [22]. Forward passes are performed through the model for each input waveform to 

obtain predicted probabilities for each class (signal/noise). Repeating this process multiple times 

(e.g., 100 Monte Carlo samples) helps get a distribution of predicted probabilities for each class. 
Further, percentiles (e.g., 2.5th and 97.5th percentiles) of the predicted probability distribution for 

each class are computed. These percentiles serve as bounds for the epistemic uncertainty 

associated with the model's predictions. Additionally, bar plots are drawn for better visualization 
of uncertainty analysis results, where the height of the bars represents the confidence intervals 
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(e.g., 95%confidence intervals) for each class. This allows for a qualitative assessment of the 
model's uncertainty across different classes. 

 

 
 

Figure 3.Learning curves for Loss and Accuracy for the model 

 

From this study, it was observed that epistemic uncertainty tended to be higher for ambiguous or 

complex waveforms that exhibited characteristics common to both seismic signals and noise. In 
contrast, aleatoric uncertainty was more pronounced for data points situated on the boundary 

between classes or in regions with high variability. Furthermore, the impact of dataset 

characteristics on uncertainty is investigated. For instance, seismic waveforms with low signal-to-
noise ratio (SNR) often exhibited elevated aleatoric uncertainty due to the inherent variability 

introduced by background noise. Conversely, high-SNR waveforms typically had lower aleatoric 

uncertainty but could still exhibit significant epistemic uncertainty in cases where the model 

lacked sufficient training data to confidently discriminate subtle features. For example, Figure 6 
(c) shows a visualization of the ground velocity time series for a noise waveform and its 

corresponding uncertainty estimates obtained after Monte Carlo sampling. It can be observed that 

the model’s prediction for this particular waveform displays a high level of uncertainty. 
 

The higher epistemic uncertainty, indicated by the longer bars indicates that the model has 

encountered fewer training samples with the same characteristics as the given waveform. The 

higher aleatoric uncertainty, which is shown by the significant probability assigned to the other 
class (quake) indicates that the model struggles to classify the waveform. In cases like these, 

where the model assigns significant probabilities to both the classes, it is better to look for 

sources other than the model prediction to learn the true nature of the waveform and avoid the 
possibility of a missed event or a false alarm. 

 

In real-world applications, such uncertainty quantification is critical as it offers a significant 
advantage in improving the reliability and interpretability of predictions in seismic event 

classification and mitigation.By incorporating uncertainty quantification into seismic monitoring 

systems, early warning systems can assess the confidence of their predictions, reducing false 

alarms or missed detections. This is especially critical for real-time earthquake monitoring, where 
high uncertainty in model predictions may trigger further analysis before issuing public alerts, 

ensuring a more reliable response. Additionally, uncertainty quantification informs emergency 

response decisions, allowing authorities to better prioritize actions based on prediction certainty, 
thereby optimizing resource allocation and potentially saving lives during crisis situations. 

 

Moreover, uncertainty quantification proves valuable in mitigating risks associated with induced 
seismicity, such as those arising from industrial activities like geothermal energy extraction or 

hydraulic fracturing. When predictions are flagged with high uncertainty, operators can adjust or 

halt operations to prevent potentially dangerous outcomes. Uncertainty quantification also 

enhances seismic hazard assessments by accounting for data gaps, improving long-term 
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predictions in regions with limited seismic data, and guiding building codes and urban planning. 
Furthermore, it aids in seismic data quality control by identifying noisy or unreliable data and 

supports post-event analysis by highlighting predictions that require further investigation.  

 

 
 

Figure 4. Precision-Recall curve for the model 

 

This leads to better-informed damage assessments. Overall, integrating uncertainty quantification 

in BCNNs provides a more robust framework for seismic monitoring, optimizing network design, 
improving decision-making, and enhancing risk mitigation strategies. 

 

Therefore, the BCNN developed in this study demonstrates remarkable seismic signal/noise 
discrimination performance. The model achieves a high prediction accuracy of 99.1% on the test 

dataset, showcasing its effectiveness in classifying seismic events accurately. Further, uncertainty 

analysis reiterates the importance of considering both aleatoric and epistemic uncertainty in 

seismic signal discrimination. By quantifying uncertainty, decision-makers gain valuable insights 
into the reliability of model predictions, crucial for applications in earthquake monitoring and 

hazard assessment. The observed higher epistemic uncertainty for ambiguous waveforms 

highlights the model's ability to ‘know what it doesn’t know’ i.e. the model is able to indicate 
when a given waveform shows less or no similarity to the data on which the model has been 

trained on. On the other hand, the observed higher aleatoric uncertainty for instances where the 

distinction between seismic signals and noise is challenging, highlighting caution in decision-
making processes. 

 

Nevertheless, the implications of uncertainty-aware seismic signal discrimination extend beyond 

model performance metrics. Decision-makers in earthquake-prone regions must navigate the 
precision-recall trade-off carefully, especially when deploying real-time detection systems. This 

study findings emphasize the need for informed threshold selection to balance the risk of false 

positives and falsenegatives effectively. Additionally, the visualization of uncertainty bounds 
facilitates qualitative understanding and can guide decision-making processes in seismic event 

classification tasks. There are limitations in this study that warrant further consideration. The 

tendency for the model to misclassify certain seismic events as "noise" and vice versa 

underscores the need for further investigation into model refinement and feature engineering 
techniques. Future research could explore ensemble methods or incorporate domain knowledge 

to enhance model performance and reduce classification errors [23], [24]. Additionally, 

expanding the dataset to encompass a broader range of seismic conditions could improve the 
model's generalization capabilities and reduce uncertainty associated with data variability. 

Alternative implementations of Bayesian networks should be explored where every layer is 

modeled using Flipout layers, which may lead to improved uncertainty quantification. 
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Figure 5. Confusion Matrix 

 

 
 
Figure 6. Ground velocity waveform time series and their corresponding uncertainty estimates obtained via 

Monte Carlo sampling: (a) shows a high-confidence prediction for a seismic event, with negligible 

uncertainty. Both epistemic uncertainty (indicated by the short bar length) and aleatoric uncertainty 

(reflected by the absence of probability assigned to the noise class) are minimal. This is likely due to the 

waveform's clear and distinct characteristics of an earthquake, (b) illustrates a prediction for an earthquake 

waveform with moderate epistemic uncertainty, as indicated by the longer bars, and some aleatoric 
uncertainty, as reflected by the non-zero probability assigned to the incorrect (noise, shown in red) class.(c) 

depicts a prediction for a noise waveform with a high level of uncertainty, both epistemic (shown by the 

longer bars) and aleatoric (indicated by the substantial probability assigned to the incorrect quake class) 
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3.3. Sliding Window Approach 
 

To extend the model’s predictive capabilities to waveforms exceeding 6 seconds, a sliding 

window methodology was employed. This technique involves partitioning the longer waveform 
into contiguous 6 second segments. Each segment is then individually processed by the model to 

yield predictions, which are subsequently aggregated to produce a final prediction for the entire 

waveform. In this study, overlapping segments were utilized to enhance contextretention, with 
final predictions derived through a majority voting mechanism. 

 

4. CONCLUSIONS 
 

In this study, a comprehensive investigation into uncertainty-aware seismic signal/noise 
discrimination using Bayesian Convolutional Neural Networks (BCNNs) is presented. The salient 

conclusions from the study are: 

 
(i)   BCNNs are capable in classifying seismic events with prediction accuracy of 99.1%; (ii) 

proposed BCCN model is easy to implement in decision-making processes in earthquake 

monitoring, assessment and possible mitigation and help foster resilience and preparedness in 

earthquake-prone regions; and (iii) visualization of uncertainty bounds provides decision-makers 
with qualitative insights to guide informed decisions in seismic event classification tasks. 
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