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ABSTRACT 
 
This paper presents a complete framework for combining event-based neuromorphic 

processing, hyperdimensional computing and tropical algebra for use within cognitive 

ontology networks. Using the Iris dataset I construct a virtual ontology network to simulate 

cognitive computing processes. Event-based neuromorphic processing models with spike 

activities and stochastic synapses dynamically adapt the networks’ topology. 
Hyperdimensional vectors represent the entities and relationships whilst tropical algebra 

operations bind these representations to encode complex relationships. A Multi-Layer 

Perceptron (MLP) with adaptive dropout and learning rates that are influenced by 

neuromorphic spike activities performs clustering and classification tasks. 
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1. INTRODUCTION 
 

The combination of event-based neuromorphic processing, hyperdimensional computing and 
tropical algebra offers us a novel approach to addressing the ever increasing complexity of 

cognitive computing tasks. Neuromorphic processing mimics the brain's adaptive neural activity 

by employing event-driven stochastic synapses that adjust dynamically in response to spike 
activity thus making it ideal for real-time and event-based learning. Meanwhile, 

hyperdimensional computing provides a solid method for representing information as high-

dimensional vectors (hypervectors) which are resilient to noise and well-suited for encoding 

symbolic data. 

 
Using tropical algebra for binding these hypervectors allows us to combine entities and 

relationships in a computationally efficient and biologically plausible way. This framework 

enables continuous adaptation, learning and memory consolidation which are key to cognitive 
computing. By adjusting learning rates based on spike activity and employing frequency-

weighted binding of hypervectors the system dynamically adjusts its behavior thus leading to 

enhanced performance in both clustering and classification tasks. 
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In this paper, I demonstrate these principles using the Iris dataset. I build an ontology network 
where entities are represented as nodes and relationships such as belongs_to and similar_to are 

dynamically updated based on the neuromorphic spike events. The integration of tropical algebra 

provides an efficient mechanism for binding relationships whilst the adaptive learning rate 

ensures faster convergence during training. 

 

2. METHODOLOGY 
 

2.1.Ontology Network Construction 
 

2.1.1. Dataset Preparation 
 

The Iris dataset is an old but relevant benchmark in machine learning which comprises 150 
samples of iris flowers each described by four numerical features: sepal length, sepal width, petal 

length and petal width. The dataset is evenly divided among three species: Setosa, Versicolor and 

Virginica. Each sample is labelled with its corresponding species thus providing a foundation for 

supervised learning tasks. 
 

2.1.2. Entity Representation 
 
In my ontology network each sample from the Iris dataset is represented as an entity 'e i', where 

‘i’ ranges from 1 to 150. Entities are assigned unique identifiers corresponding to their index in 

the dataset. The features of each sample are stored but not directly used in the ontology network 

construction as the focus is on relational structures. 
 

2.1.3. Relationship Construction 
 
In my framework I construct a directed ontology network G = (V, E) where: 

 

● V is the set of entities and species nodes. 

● E is the set of directed edges representing relationships between entities. 

 

2.1.3.1. BELONGS_TO RELATION: 

 

For each entity ‘e i’ I add an edge to its species node ‘sj’ : 
This establishes a hierarchical relationship, reflecting the taxonomic classification inherent in the 

dataset. The 'belongs_to' relation is essential for capturing the embedded class structure and 

serves as a foundational link in the ontology network. 
 

2.1.3.2. SIMILAR_TO RELATION: 

 

 
 

This random association aims to mimic the associative memory and connections found in 
cognitive networks, allowing the ontology to represent lateral relationships that could emerge 

from shared features or patterns that are not explicitly defined. 
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2.1.3.3. COMPLEX RELATIONS 
 

To further enhance the network's richness I can introduce additional relations such as 'precedes', 

'influences' or domain-specific relations relevant to the data. However for this study, I will focus 

on 'belongs_to' and 'similar_to' to maintain clarity. 
 

2.2.Event-Based Neuromorphic Processing 
 

2.2.1. Neuromorphic Event Processor Design 
 

 
 

The neuromorphic processor simulates spike-based event-driven biological learning by managing 

the firing of stochastic synapses between recorded entities. Each entity in the ontology network 
undergoes an event processing step where related entities receive "spikes" based on a probability 

threshold. The spike history is decayed over time to prevent unbounded accumulation in turn 

simulating synaptic plasticity similar to biological long-term potentiation (LTP) and long-term 
depression (LTD). 

 

2.2.2. Stochastic Synapse Firing 
 

 
 

In each processing step the synapse firing is probabilistic, reflecting the inherent randomness 

found in biological neural networks. For each event the likelihood of a synapse firing is governed 
by a stochasticity rate, ensuring that connections between entities are dynamically updated based 

on recent activity. The more an entity fires, the stronger its connections become in turn 

reinforcing frequently activated synapses whilst allowing less active connections to decay. 

 

2.2.3. Spike Decay 
 

 
Spike history is decayed exponentially to simulate biological forgetting. This mechanism 

prevents a single entity from dominating the entire network and encourages ongoing learning by 

allowing its topology to evolve. As a result the connections between entities are reinforced or 
removed based on their spike activity thus mimicking the adaptive learning seen in synaptic 

plasticity. 
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2.2.4. Dynamic Topology Adaptation 
 

The network topology adapts based on spike activity simulating synaptic plasticity mechanisms 

such as long-term potentiation (LTP) and long-term depression (LTD): 

 

2.2.4.1. Edge Addition 

 

 
 

2.2.4.2. Edge Removal 

 

 
2.2.5. Adaptive Learning Rate Adjustment 
 

 
The learning rate in my Multi-Layer Perceptron (MLP) dynamically adapts to changes in spike 
activity within the neuromorphic network. This process is defined by the following adjustment 

rule: 

 

2.3.Hyperdimensional Computing with Tropical Algebra 
 

2.3.1. Hypervector Generation 
 

 
 

In hyperdimensional computing we represent symbols and concepts using high-dimensional 

vectors (hypervectors) that typically have thousands of dimensions. These hypervectors are 

randomly generated ensuring they are nearly orthogonal to each other in turn enhancing 
robustness and noise resilience of the approach. 

 

The process of generating hypervectors can be described by the following equation: 
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2.3.2. Tropical Algebra Operations 
 

 
 

Tropical algebra's operations such as max and addition help the system to facilitate efficient 
binding of hypervectors whilst maintaining biological plausibility. The encoding of relationships 

involves combining an entity hypervector with relation hypervectors using either a tropical bind 

or an adaptive bind, depending on the type and significance of the relationship. Frequency-based 
weighting is used here to modulate the binding strength for frequently encountered relationships. 

 

2.3.3. Advantages of Tropical Algebra in Hyperdimensional Computing 
 

Tropical algebra's operations align well with the requirements of hyperdimensional computing: 

 

● Associativity and Commutativity: The max and addition operations are associative and 

commutative thus ensuring consistency in vector binding regardless of the order of 
operations. This property is crucial when dealing with complex networks where the 

sequence of relationships may not be fixed. 

● Efficiency: Max and addition operations are computationally efficient allowing for 

scalable implementations. 
● Biological Plausibility: The operations can be related to neuronal activation patterns 

thus enhancing the model's biological relevance. 

 

 
 

Figure 1 - Tropical Algebra Operation Flow 

 
In hyperdimensional computing these operations facilitate the binding and superposition of 

hypervectors in turn enabling the representation of complex structures. Tropical algebra's 

operations are associative and commutative, ensuring consistency in vector manipulations. 
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2.3.4. Relationship Encoding 
 

 
The encoding of relationships in the ontology network leverages tropical algebra operations to 
transform relational information into entity representations efficiently. 

 

 
 

Figure 2 - Binding Logic 

 
2.3.4.1.  Weight Adjustment 

 

 
 

Relations with higher activity or importance will receive greater weights in turn influencing the 

encoded hypervectors accordingly. 
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2.3.4.2. Normalization and Decay 
 

 
 

After encoding I normalize the hypervector to maintain consistency and prevent numerical 
instability: 

 

2.4.Multi-Layer Perceptron with Adaptive Dropout 
 

2.4.1. Network Architecture 
 

An MLP was used to classify entities based on encoded hypervectors: 

 
● Input Layer: Accepts hypervectors of dimensionality. 
● Hidden Layer: Contains neurons using ReLU activation with dropout that adapts 

dynamically based on spike activity to prevent overfitting. 
● Output Layer: Produces probabilities for the three Iris species. 
 

2.4.2. Adaptive Dropout Mechanism 
 

 
 
Dropout is a regularization technique that randomly sets a fraction of the input units to zero 

during the training phase and prevents overfitting by encouraging the network to learn from 

redundant representations. 

 
Higher spike activity indicates there are more dynamic changes in the network signifying the 

requirement of an increased regularization step to prevent overfitting to transient patterns. 
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2.4.3. Training Procedure 
 

Early Stopping: 
 

Training is halted if the validation loss does not improve beyond a threshold ϵ over several 
epochs which in turn also prevents overfitting and reduces computational time. 

 

2.5.Clustering and Visualization 
 

I perform clustering using K-Means with n=3 clusters corresponding to the three iris species. 

Principal Component Analysis (PCA) reduces the hypervector dimensionality for visualization 
purposes and t-Distributed Stochastic Neighbor Embedding (t-SNE) further visualizes the 

clusters in two dimensions. 

 

2.5.1. Visualization Techniques 

 
● PCA Plot: Displays clusters in a two-dimensional space using the first two principal 

components. It provides an overview of the data distribution and cluster separation.  
● t-SNE Plot: Provides a two-dimensional visualization that preserves local relationships 

between entities. t-SNE is particularly useful when clusters are not linearly separable. 
 

3. IMPLEMENTATION DETAILS 
 

3.1.Software and Libraries 
 

The framework is built using Python 3.8 and a number of key libraries for numerical 

computation, neural networks, graph manipulation and data visualization. Here is the list of 

libraries used along with their purposes: 
 

● NumPy: Used for numerical computations and handling multidimensional arrays and 

matrices. 

● PyTorch: A deep learning library for neural networks, tensor operations, and GPU-
accelerated training. 

● NetworkX: For constructing and manipulating ontology networks, providing graph 

algorithms and visualization tools. 

● Matplotlib: A plotting library for visualizing graphs, spike histories, clustering results, 

and data distributions. 

● scikit-learn: A machine learning library for clustering (e.g., K-Means), dimensionality 
reduction (e.g., PCA, t-SNE), and dataset handling. 

● SciPy: For calculating distances, such as cosine similarity between high-dimensional 

vectors. 

● random: Built-in Python library to introduce stochasticity, such as random entity 
selection and synapse firing. 

● pandas: For loading and handling datasets like Iris, crucial for building the ontology 

network. 

● mpl_toolkits.mplot3d (Axes3D): A Matplotlib toolkit for 3D plotting and visualizing 

high-dimensional data in reduced space. 
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3.2. Code Structure 
 

3.2.1. Ontology Network Setup 
 
The code uses the networkx library to create and manipulate an ontology network structured in a 

directed graph. The ontology network itself represents different entities and their relationships 

using their relative nodes and edges. It simulates hierarchical and lateral relations between 
entities, such as belongs_to and similar_to. 

 
3.2.2. Ontology Network Initialization 
 

 
 

A directed graph (DiGraph) is created to represent the ontology network. 
Directed graphs are useful for relationships like hierarchical or cause-effect links. 

 
3.2.3. Adding Entity Nodes and belongs_to Relations 

 

 
 

The Iris dataset is used and each entity (data point) is represented as a node in the ontology 
network. The relation belongs_to establishes a hierarchical classification between the entity and 

its corresponding species (Setosa, Versicolor, Virginica). 

 
3.2.4. Adding similar_to Relations 
 

 
 

Relations labeled similar_to are added randomly between the entities. This relation introduces 
more lateral connections between nodes in turn simulating associative or cognitive links. 

 
3.2.5. Neuromorphic Event Processor 

 
This part of the code defines the NeuromorphicEventProcessor class which simulates the 
neuromorphic event-based processing. It handles synaptic activity decay, dynamic topology 

updates and learning rate adjustments based on the spike events. 
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Each method in the class is explained below: 

 
3.2.5.1. Class Initialization (__INIT__) 

 

 
 

3.2.5.2. Event Processing (PROCESS_EVENT) 

 

 
 
This method simulates an event where an entity "fires" spikes to other related entities. 

 
3.2.5.3. Spike History Decay (DECAY_SPIKE_HISTORY) 

 

 
 

This method decays the spike activity of each entity over time in turn simulating biological  

forgetting. 

 
3.2.5.4. Dynamic Topology Updates (UPDATE_TOPOLOGY) 

 

 
 
This method updates the network's topology dynamically based on the spike history. 
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3.2.5.5. Learning Rate Adjustment (ADJUST_LEARNING_RATE) 
 

 
 

This method adjusts the learning rate dynamically based on the total spike activity within the 

network. 

 
3.2.6. Dynamic Topology Updates 

 

 
 

The topology of the ontology network is dynamically modified based on the spike history. 
Connections (edges) are reinforced or removed from the network depending on the synaptic 

activity produced. 

 
3.2.7. Learning Rate Adjustment 

 

 
 

The learning rate is adjusted based on spike activity to simulate synaptic plasticity of biological 
neural systems. Increased spike activity results in a higher learning rate thus allowing the system 

to learn more quickly. 

 
3.2.8. Hyperdimensional Encoding 
 

The code uses hyperdimensional computing to represent the relationships between entities with 

high-dimensional vectors, leveraging operations such as tropical algebra for binding operations. 

 
 

 

 



International Journal on Cybernetics & Informatics (IJCI) Vol.13, No.6, December2024 

42 

3.2.8.1. Random Hypervector Generation 

 

 
 

The function generates random hypervectors for the entities and relations. 
 

3.2.8.2.  Tropical Bind Operation 

 

 
 
This operation binds two hypervectors using the tropical algebra method, which then takes the 

max value of the corresponding dimensions. 

 
3.2.9. Relationship Encoding 
 

The encode_relationships() function encodes an entity's relationships into a composite 

hypervector, considering hierarchical (belongs_to) and lateral (similar_to) relations. The steps are 
outlined below: 

 

3.2.10. Cache Check 

 

 
 
If the entity's hypervector is already cached then return it to avoid any redundant computation. 

 
3.2.11. Initialize Entity Hypervector 
 

 
 
If not cached then fetch or generate a random hypervector for the entity. 

 
3.2.12. Get Related Entities 
 
Retrieve the related entities and their relations using get_related_entities_with_relations(). 

 
3.2.13. Initialize Relation and Related Entity Hypervectors 
 

 
 
Fetch or generate the hypervectors for relations and related entities. 
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3.2.14. Assign Relation Weights 

 

 
 
Relations such as belongs_to are given higher weights. 

 
3.2.15. Binding 
 

 
 

We then combine relations and related entity hypervectors using either tropical (max) or adaptive 

(weighted) binding operations. 

 
3.2.16. Update Entity Hypervector 
 

 
 

Then bind the bound_vector to the entity_vector using the same method. 

 
3.2.17. Normalization and Decay 
 

 
 

Normalize and apply decay to the final entity hypervector. 
 

3.2.18. Cache and Return 
 

 
 
Cache the resulting hypervector and then return it. 

 

3.2.19. MLP Definition and Training 
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The code defines an MLP (Multi-Layer Perceptron) and a training loop that incorporates the 

neuromorphic event processing and hyperdimensional encodings. 

 

3.2.20. Training Loop 
 

 
 

The training loop updates model weights using backpropagation. The MLP is trained on the 
resulting encoded hypervectors with dynamic adjustment of the dropout rate based on the 

synaptic spike activity. 

 

3.3. Execution Flow 
 

3.3.1. Initialize Hypervectors 
 

 
 
Hypervectors are generated for all the entities and relations in the ontology network. 

 
3.3.2. Instantiate Event Processor 
 

 
 

An instance of the NeuromorphicEventProcessor is created to handle event-based processing. 

 
3.3.3. Process Events 

 

 
 
Events are processed over multiple iterations thus simulating spike activity. 
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3.3.4. Encode Hypervectors 
 

 
 
Relationships for each entity are then encoded using tropical or adaptive binding. 

 

3.3.5. Train MLP 
 

 
 
The MLP is trained on encoded hypervectors and their corresponding labels. 

 

3.3.6. Cluster and Visualize 
 

 
 
Clustering and visualization are performed using K-Means and PCA. 

 

4. EXPERIMENTAL RESULTS 
 

4.1.Spike Activity Analysis 
 

4.1.1. Spike History Visualization 
 

 
 

Figure 3 - Spike History Visualization 
 

Spike history was tracked over multiple iterations with visualizations showing the dynamic 
adaptation of the ontology network's topology. As entities fired spikes the connections between 

them were reinforced whilst inactive connections decayed and were removed. This adaptive 
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mechanism led to continuous adjustments in the learning rate with the rate then rising from an 
initial value of 0.001 to 0.00121 during the simulation. The visualization of the spike history 

shows that entities with higher spike counts tend to form stronger connections thus demonstrating 

the system’s ability to adapt to activity patterns over time. 

 
4.1.2. Dynamic Topology Changes 
 

The ontology network adapts dynamically with edges being added or removed based on the spike 

activity thresholds. The 'reinforced' edges represent strengthened connections due to high spike 
activity in turn simulating synaptic strengthening. Entities with high spike histories tend to form 

more 'reinforced' connections thus altering the network's topology and potentially influencing the 

flow of information. 

 

4.2.Hypervector Similarity 
 

A similarity matrix was computed based on the cosine similarity between encoded hypervectors 
of entities. Entities belonging to the same species exhibited higher similarity scores, indicating 

that the tropical and adaptive binding operations successfully captured the underlying taxonomic 

structure of the Iris dataset. The use of tropical algebra preserved associative properties, allowing 
bound hypervectors to maintain distinguishability between entities whilst incorporating relational 

information. 

 

4.3.Classification Performance 
 

4.3.1. Training Metrics 

 

The MLP was trained on the encoded hypervectors using adaptive learning rates: 

 
● Neuromorphic-only Approach: Accuracy of 68.89%. 
● HAC-only Approach: Accuracy of 31.11%. 
● Ontology-only Approach: Accuracy of 35.56%. 
● Combined Approach: Accuracy of 73.33% thus highlighting the improved performance 

with integrated neuromorphic, hyperdimensional and ontology-based representations. 
 
Training time varied among approaches with the neuromorphic-only model showing the fastest 

convergence due to its dynamic learning rate adjustments. With further work I believe I can 

reduce the convergence time of the combined approach substantially. 

 
4.3.2. Adaptive Learning Rate Influence 

 

Adjusting the learning rate based on spike activity allowed the model to focus on more active 
regions of the network. This dynamic adjustment enhanced convergence and improved overall 

model performance. 

 

4.4.Clustering Results 
 

4.4.1. PCA Visualization 
 

The PCA plot illustrated the clustering of entities based on their reduced hypervectors. The three 

clusters corresponded to the three species, showing clear separation. 
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Figure 4: PCA Visualization of Entity Clusters 
 

The figure demonstrated that entities of the same species were grouped together, validating the 
effectiveness of the hyperdimensional representations and the clustering algorithm. 

 
4.4.2. t-SNE Visualization 

 
The t-SNE plot provided a more detailed visualization, capturing local structures and 

relationships between entities. 

 

 
 

Figure 5: t-SNE Visualization of Entity Clusters 
 
The t-SNE plot revealed subtle distinctions within clusters and potential overlaps, offering 

insights into the data's intrinsic geometry. 

 

4.5. Comparative Analysis with Traditional Ontology-Based Reasoning Systems 
 

To fully evaluate the impact of this proposed framework I conducted a comparative analysis with 

other traditional ontology-based reasoning systems. Traditional ontology-based systems primarily 
rely heavily on pre-set rules and logical inference to draw upon their fixed conclusions based on 
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structured knowledge representations. While these systems are mostly effective in handling 
deterministic data and well-defined relationships, they tend to face limitations when dealing with 

the dynamic and uncertain nature of real-world cognitive computing tasks. 

 
4.5.1. Advantages of the Combined Neuromorphic-Hyperdimensional Approach 
 

The integrated model combining neuromorphic processing, hyperdimensional computing and 

tropical algebra offers us several advantages over traditional ontology-based systems: 

 
● Dynamic Adaptation: Unlike static traditional systems the neuromorphic component 

enables continuous adaptation to new data through mechanisms like STDP making it 

suitable for real-time and evolving environments. 
● Robustness to Noise: Hyperdimensional vectors are inherently robust to noise, allowing 

the system to handle incomplete or ambiguous data better than traditional ontology 
systems. 

● Scalability and Efficiency: Tropical algebra operations simplify complex calculations 

into efficient max and addition operations, reducing computational overhead and making 

the model scalable to larger datasets. 
 

4.5.2. Quantitative Comparison 

 

To quantify the performance differences between the integrated approach and traditional 

ontology-based systems I have evaluated both models on the Iris dataset in terms of accuracy, 
training time and their computational efficiency. 

 
Table 1. Comparison Metrics 

 

Approach Accuracy FontTraining Time (s) 

Neuromorphic-only 0.688889 0.013968 

HAC-only 0.311111 0.011589 

Ontology-only 0.355556 0.021892 

Combined 0.733333 0.017136 

 

Observations: 

 
● The combined approach achieved 73.33% accuracy significantly outperforming the 

traditional ontology system's 35.56%, showing its superior ability to adapt to complex 
data. 

● Although training time was slightly higher than the traditional system, it was much lower 

than the hyperdimensional-only method thus balancing accuracy and efficiency. 
● The traditional system's rule-based inference introduced high complexity whilst tropical 

algebra in the combined model reduced complexity in turn improving scalability.  
● The neuromorphic learning rate adaptation effectively focused resources on active 

areas, enhancing the model’s performance. 
 

4.5.3. Limitations of Traditional Systems 

 

Traditional systems are quite deterministic and lack the stochastic flexibility needed to handle 
the uncertainty that arises in cognitive tasks. They also rely heavily on domain expertise, which is 

time-consuming and error-prone when it comes to large data. 
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In contrast, the integrated approach introduces stochasticity through neuromorphic principles 
thus improving adaptability and aligning with biological neuron processes making it suitable for 

dynamic environments. 

 

4.5.4. Conclusion of the Comparative Analysis 

 

The integrated approach combining neuromorphic processing, hyperdimensional computing and 

tropical algebra significantly outperforms traditional ontology systems. It enhances performance 
of clustering and classification, remains computationally efficient and adapts dynamically to new 

data making it ideal for advanced cognitive computing applications. 

 

5. DISCUSSION 
 

5.1. Integration Advantages 
 
The combination of neuromorphic processing, hyperdimensional computing and tropical 

algebra significantly enhances cognitive computing tasks particularly in dynamic environments 

where continuous adaptation and robustness to noise are critical. The system’s ability to adjust its 
learning rates based on spike activity, coupled with frequency-weighted binding ensures that the 

most important connections are reinforced in turn improving both learning efficiency and overall 

performance. 
 
This offers several benefits: 

 

● Dynamic Adaptation: The system adjusts its topology and learning parameters based on 

activity patterns thus mimicking neural plasticity and allowing for responsive behavior in 
changing environments. 

● Robust Representations: High-dimensional hypervectors capture complex relationships 

and are resilient to noise in turn providing fault tolerance and error correction. 
● Computational Efficiency: Tropical algebra operations (max and addition) are efficient 

and suitable for parallel processing, reducing overhead and improving scalability.  
● Biological Plausibility: The framework mirrors principles from neuroscience, enhancing 

its relevance for cognitive computing. 
 

5.2. Future Work 
 

● Larger Datasets: Testing the framework on more complex datasets to assess scalability 
and generalization. 

● Real-Time Implementation: Implementing the system on neuromorphic hardware (e.g., 

IBM TrueNorth, Intel Loihi) for real-time applications. 
● Interpretability: Developing methods to visualize and interpret hyperdimensional 

representations for better understanding. 
● Multimodal Integration: Expanding the framework to handle multimodal data such as 

sensory inputs like vision or language. 
 

6. CONCLUSION 

 

This work presents a novel framework integrating event-based neuromorphic processing with 

hyperdimensional computing using tropical algebra within ontology networks. The approach 
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effectively simulates cognitive processes, dynamically adapts to activity patterns and 
demonstrates improved performance in clustering and classification tasks with ease. 

 
By leveraging the strengths of neuromorphic processing and hyperdimensional representations 

the framework offers a promising direction for advanced cognitive computing applications. It 
bridges the gap between biologically inspired computing models and practical machine learning 

techniques thus opening avenues for further research and development.  
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