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ABSTRACT 
 

This study analyzes and predicts air pollution in Asia, focusing on PM 2.5 levels from 2018 to 2023 across 

five regions: Central, East, South, Southeast, and West Asia. South Asia emerged as the most polluted 

region, with Bangladesh, India, and Pakistan consistently having the highest PM 2.5 levels and death 

rates, especially in Nepal, Pakistan, and India. East Asia showed the lowest pollution levels. K-means 

clustering categorized countries into high, moderate, and low pollution groups. The ARIMA model 
effectively predicted 2023 PM 2.5 levels (MAE: 3.99, MSE: 33.80, RMSE: 5.81, R²: 0.86). The findings 

emphasize the need for targeted interventions to address severe pollution and health risks in South Asia. 
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1. INTRODUCTION 
 

Air pollution, particularly PM 2.5 (particulate matter with a diameter of less than 2.5 
micrometers), is a significant global environmental and public health issue due to its severe 

health impacts, such as respiratory and cardiovascular diseases and premature death. Asia, with 

over 60% of the global population, faces some of the highest PM 2.5 levels, especially in South 
Asia, where several cities rank among the most polluted worldwide. In recent years, the rapid 

industrialization, urbanization, and population growth in Asia have exacerbated air quality issues, 

particularly in densely populated regions [1]. This study analyzes PM 2.5 trends across five Asian 
regions— Central, East, South, Southeast, and West Asia—from 2018 to 2023. Data from 38 

countries were analyzed to explore regional pollution disparities, correlations between PM 2.5 

levels, population density, and mortality rates, and classify countries into pollution categories 

using K-means clustering. The ARIMA model was employed to predict PM 2.5 levels, achieving 
robust metrics (MAE: 3.99, MSE: 33.80, RMSE: 5.81, R²: 0.86) for 2023 predictions. Insights 

from this study aim to support policy interventions and public health measures to mitigate air 

pollution impacts. The paper is organized as follows: Section 2 reviews relevant literature; 
Section 3 outlines the dataset and methodology; Section 4 presents results on PM 2.5 trends and 

correlations, details the predictive modelling; and Section 5 concludes with implications and 

future research directions. 
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2. LITERATURE REVIEW 
 
Over recent decades, air pollution in Asia has become a major threat to food security [2] and 

human health [3]. Wildfire smoke, pollen-based aeroallergens, and climate change, primarily due 

to greenhouse gas emissions, heavily influence PM2.5 levels. Research highlights severe impacts 

on health and the environment, with 37 of the world’s 40 most polluted cities in South Asia [4]. 
Contaminated air in this region leads to millions of preventable deaths annually and harms crops 

essential for feeding many [5]. Biomass burning is a significant source of haze [6], accounting for 

up to 40–60% of haze events in Southeast Asia from 2003 to 2014 [7]. This worsening air quality 
presents significant challenges for sustainability and health. In South Asia, countries like India, 

Nepal, Bangladesh, and Pakistan face severe declines in air quality due to climate change [8]. 

Additionally, air pollution contributes to about 349,681 pregnancy losses annually [9] and 

impacts food security, with estimates suggesting that it damages crops sufficient to feed 94 
million people each year and reduces life expectancy by approximately three years for about 660 

million people [10]. Several models have been created to forecast these potential consequences. 

However, making precise forecasts is very impossible. A hybrid intelligent model integrating 
LSTM and MVO has been created to forecast air pollution from Combined Cycle Power Plants 

[11]. A deep learning framework using a temporal sliding LSTM extended model has been 

created [12]. 
 

Recent studies have advanced air quality prediction models by integrating machine learning 

techniques. One model, VMD-CSA-CNN-LSTM, combined CNN and LSTM networks [13] for 

AQI prediction in nine Chinese cities. Optimized with the Chameleon Swarm Algorithm and 
variational mode decomposition, it achieved high accuracy (RMSE of 2.25, adjusted R-squared 

above 96%). PM2.5 and PM10 were identified as key pollutants, with ozone also significant in 

some cities, providing a tool for air quality management. Another study in Varanasi, India, 
compared machine learning models [14] like Random Forest, Decision Tree, and SVM to predict 

AQI based on PM2.5, PM10, CO, NO2, NH3, SO2, and O3 levels. Random Forest and Decision 

Tree models outperformed others, achieving near-perfect accuracy, highlighting their potential 
for real-time air quality prediction and urban planning. 

 

3. METHODOLOGY 
 

3.1. Dataset Description 
 

This study uses air quality data from IQAir [15] covering PM 2.5 levels in Asia from 2018 to 
2023. The dataset includes columns for Region, Country, annual PM 2.5 values, Population 

(2023), Area, and death rates from air pollution (2018-2021). Initially covering 38 countries, the 

dataset was refined to 36 countries for ARIMA model predictions due to data availability. 
 

3.2. Data Preprocessing 
 

1) Handling Non-Numeric Values: PM 2.5 values were converted to numeric, with non-

numeric entries replaced by NaN and then filled with 0. 

2) Population and Area Data Cleaning: Removed commas and converted Population and Area 
data to numeric format. 

3) Population Density Calculation: A new feature, Population Density, was calculated by 

dividing the Population by the Area for each country. 

4) Filtering: Only Asian countries were included, and missing values in PM 2.5 data were 
filled with zeros. 

5) Regional Classification: Countries were categorized into one of the five Asian regions. 
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3.3. Temporal Analysis 
 

To analyze the temporal trends of PM 2.5 levels across Asia from 2018 to 2023, we conducted 

the following steps: 
 

1) Regional Analysis: We created individual time series plots for PM 2.5 levels across the 

five Asian regions (Central, East, South, Southeast, and West Asia) to observe regional 
patterns. Additionally, we conducted trend analysis by plotting PM 2.5 levels over time for 

each country within the regions, allowing us to compare temporal changes and identify 

regional trends. 

2) Overall Asia Analysis: We calculated average PM 2.5 levels for each region and generated 
a summary plot to provide an aggregated view. This summary plot enabled us to compare 

temporal trends across all five regions, offering a comprehensive overview of air pollution 

evolution in Asia from 2018 to 2023. 

 

3.4. Death Rate Analysis 
 

To examine the impact of air pollution on mortality rates across different regions in Asia, we 

conducted a detailed analysis of death rates attributable to air pollution from 2018 to 2021. 
  

1) Regional Death Rate Analysis: We calculated and visualized average death rates per region 

for each year (2018-2021) using bar plots. This approach allowed for a clear comparison of 

mortality rates across regions and highlighted disparities in death rates. 
2) South Asia Mortality Trends: We focused on South Asia due to its high PM 2.5 levels and 

death rates. Data for South Asian countries was filtered, and death rates from 2018 to 2021 

were plotted for each country using line plots. This detailed examination helped identify 
the countries most impacted by air pollution in terms of mortality. 

 

3.5. Correlation Analysis 
 

In this subsection, we performed three key correlation analyses to explore the relationships 
between PM 2.5 levels, population density, and death rates across various regions in Asia. These 

analyses aimed to uncover significant patterns and provide deeper insights into how air pollution 

impacts different areas. 

 
1) Correlation Between PM 2.5 Levels and Population Density: We calculated for the year 

2023 to assess the impact of population density on PM 2.5 levels. This analysis was 

conducted separately for each region to determine if more densely populated areas have 
higher particulate matter concentrations. The expected result is to reveal whether a 

significant positive relationship exists, indicating that higher human activity areas may face 

more severe air pollution. 

2) Correlation Between Average PM 2.5 Levels and Average Death Rates: To investigate the 

relationship between air pollution and mortality, we conducted a correlation analysis 

using average PM 2.5 levels and death rates. The analysis involved comparing average PM 

2.5 levels from 2018 to 2023 with average death rates from 2018 to 2021 to assess their 

relationship. Additionally, we examined the correlation between PM 2.5 levels from 2018 

to 2021 and death rates for the same period to determine if recent pollution data (2022-
2023) had an impact on the results. 

  

These correlation analyses are essential in understanding the broader impacts of PM 2.5 on 
human health and environmental sustainability across Asia. 
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3.6. Clustering 
 

In this study, K-Means Clustering was used to categorize countries based on their PM 2.5 levels 

in 2023. The goal was to group countries with similar air quality profiles into distinct clusters for 
analyzing regional pollution patterns. PM 2.5 data was standardized to ensure variables were on a 

comparable scale before applying the clustering algorithm. We determined using the Elbow 

Method, which involved plotting the within-cluster sum of squares (WCSS) against various k 
values to identify the optimal k at the “elbow” point where additional clusters offer minimal 

improvement. Then we applied K-Means to the standardized data to create clusters representing 

different levels of air pollution. Each cluster was analyzed to understand the distribution of PM 

2.5 levels across countries. This clustering process played a crucial role in identifying and 
understanding the patterns of air quality in the region. 

 

3.7. ARIMA Model for Prediction 
 

The ARIMA model was used to forecast PM 2.5 levels. Data from 2018 to 2022 trained the 

model, with its performance assessed against actual 2023 values using MAE, MSE, RMSE, and 
R². For 2024, predictions were made using data up to 2023; however, without actual 2024 data, 

evaluation metrics for this forecast are not available. 

 

3.8. Evaluation Matrices 
 

The ARIMA model’s performance for 2023 was evaluated using four key metrics: Mean 
Absolute Error (MAE), which measures the average magnitude of prediction errors; Mean 

Squared Error (MSE), indicating the average squared difference between predicted and actual 

values; Root Mean Squared Error (RMSE), providing the square root of the average squared 
errors to show prediction error size; and R-squared (R²), representing the proportion of variance 

in the dependent variable explained by the model. 

 

4. RESULT ANALYSIS 
 

4.1. Temporal Analysis of PM 2.5 Levels 
 

4.1.1. South Asia Trends 

 

The temporal trends of PM 2.5 levels across South Asia from 2018 to 2023 are depicted in Figure 

1. The data reveals varying air quality trends among the countries in the region. 
 

 
 

Figure 1. Temporal Trends of PM 2.5 Levels in South Asia (2018 - 2023) 
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Bangladesh has the highest PM 2.5 levels in South Asia, increasing from 79.9 in 2018 to 97.1 in 
2023, reflecting a significant rise in pollution. India also shows an upward trend, from 54.4 to 

72.5 over the same period, indicating worsening air quality. Pakistan’s PM 2.5 levels, while 

relatively high, show a slight decrease overall, particularly from 66.8 in 2020 to 59 in 2021. 

Nepal’s levels increase gradually from 42.4 to 54.1, while Sri Lanka maintains comparatively 
lower levels, rising from 19.3 to 32, both showing moderate trends. The Maldives’ data is limited 

to 2018 (15.3) and 2019 (10.9), preventing a full assessment of recent trends. This data gap 

highlights the need for comprehensive monitoring, and future studies should consider methods 
like imputation to estimate missing values. However, it is important to acknowledge that 

imputation may not fully capture regional variations and could impact the accuracy of the overall 

trend analysis. These trends indicate varying air quality across the region, with some countries 
facing more severe pollution challenges than others, highlighting the need for comprehensive 

monitoring, especially in data-scarce areas like the Maldives. 

 

4.1.2. Central Asia Trends 
 

The temporal trends of PM 2.5 levels across Central Asia from 2018 to 2023 are illustrated in 

Figure 2. The data reveals a diverse range of air quality trends among the countries in this region. 
  

 
 

Figure 2. Temporal Trends of PM 2.5 Levels in Central Asia (2018 - 2023) 

 

Kazakhstan shows relatively stable PM 2.5 levels, with a slight increase from 21.9 in 2021 to 

29.8 in 2023. Uzbekistan displays a more variable trend, peaking at 42.8 in 2020 before declining 
to 34.3 in 2023. Kyrgyzstan shows a peak at 50.8 in 2020 but lacks data for subsequent years, 

which limits the ability to assess more recent trends. Similarly, Tajikistan’s data is only available 

up to 2020, peaking at 59.4, preventing a comprehensive analysis of air quality in later years. The 
lack of data in both countries highlights the importance of improving monitoring systems in 

Central Asia. To address these data gaps, future studies could consider methods like imputation, 

though it is essential to acknowledge that such techniques may not fully capture regional 
variations and could affect the accuracy of the trend analysis. These trends indicate variability in 

air quality across Central Asia, with some countries showing significant fluctuations and others 

more stable levels. 
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4.1.3. Southeast Asia Trends 
 

The temporal trends of PM 2.5 levels across Southeast Asia from 2018 to 2023 are depicted in 

Figure 3. The data shows considerable variability in air quality trends among the countries in this 

region. Indonesia shows a notable rise in PM 2.5 levels, peaking at 51.7 in 2021 before 
decreasing to 42 in 2023, indicating significant fluctuations in air pollution. Thailand’s levels are 

relatively stable, rising slightly from 23.3 in 2018 to 26.4 in 2023, suggesting a slow increase in 

pollution. Vietnam’s levels peaked at 34.1 in 2021 before dropping to 32.9 in 2023, reflecting 
moderate fluctuations. The Philippines maintains low levels, ranging from 13.5 in 2018 to 14.6 in 

2023, showing stable air quality. 

 
Malaysia’s data indicates a decline from 22.5 in 2018 to 19.4 in 2021, with missing values for 

2023. Singapore maintains consistently low levels, fluctuating slightly from 13.4 in 2018 to 14.8 

in 2023. Myanmar and Laos lack recent data, but previous levels show Myanmar rising slightly 

and Laos decreasing. Cambodia’s levels dropped sharply from 22.8 in 2018 to 8.3 in 2019, then 
rose again to 21.1 in 2021 before slightly decreasing to 20.1 in 2023, showing high variability. 

Overall, Southeast Asia displays diverse air quality trends, with some countries facing increasing 

pollution and others showing stability or decline, highlighting the need for tailored regional 
policies. 

 

 
 

Figure 3. Temporal Trends of PM 2.5 Levels in Southeast Asia (2018 - 2023) 

 

4.1.4. East Asia Trends 
 

The temporal trends of PM 2.5 levels across East Asia from 2018 to 2023 are presented in Figure 

4. The data reveals varied trends in air quality across the countries in this region. 
 

China shows a rising trend in PM 2.5 levels, increasing from 32.5 in 2018 to 42.2 in 2023, 

reflecting ongoing pollution challenges. Japan maintains the lowest levels in East Asia, ranging 

from 9.1 in 2018 to 12 in 2023, indicating stable air quality. South Korea’s levels gradually rise 
from 19.2 in 2018 to 24 in 2023, pointing to growing air quality concerns. Taiwan’s PM 2.5 

levels fluctuate, dropping from 20.2 in 2018 to 15 in 2020, then rising to 18.5 in 2023, suggesting 

variability in pollution trends. Mongolia records the highest levels, sharply rising from 22.5 in 
2018 to 62 in 2021, and slightly dropping to 58.5 in 2023, indicating severe air quality issues. 

Macao SAR sees a moderate increase from 16.2 in 2018 to 21.2 in 2023, and Hong Kong SAR’s 

levels also rise from 14.5 in 2018 to 20.2 in 2023, both reflecting worsening air quality. These 
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trends show diverse pollution levels across East Asia, emphasizing the need for targeted, region-
specific interventions to improve air quality. 

 

 
 

Figure 4. Temporal Trends of PM 2.5 Levels in East Asia (2018 - 2023) 
 

4.1.5. West Asia Trends 

 
The temporal trends of PM 2.5 levels across West Asia from 2018 to 2023 are illustrated in 

Figure 5. The data highlights a wide range of air quality trends among the countries in this region. 

Turkey maintains relatively stable PM 2.5 levels with slight increases from 18.7 in 2021 to 21.9 
in 2023. Saudi Arabia shows significant fluctuation, peaking at 41.5 in 2019 and dropping to 22.1 

in 2021, with missing data for 2023. Iraq’s levels vary dramatically, peaking at 80.1 in 2019 and 

falling to 39.6 in 2021, also with incomplete data. 

 

 
 

Figure 5. Temporal Trends of PM 2.5 Levels in West Asia (2018 - 2023) 

 

Israel’s levels remain relatively stable, ranging from 16.9 in 2021 to 18.6 in 2023. Qatar’s 

incomplete data shows an increase from 37.6 in 2018 to 44.3 in 2021. Bahrain experiences a 

sharp rise from 39.2 in 2018 to 59.8 in 2023, indicating worsening air quality. Kuwait fluctuates, 
peaking at 55.8 in 2019, dropping to 34 in 2021, and rising again to 56 in 2023. The UAE’s levels 

decline from 43 in 2018 to 29.2 in 2021 but increase to 49.9 in 2023. Armenia shows an upward 

trend, from 26.4 in 2018 to 33.9 in 2020, with gaps in later data. Azerbaijan and Georgia also 
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have incomplete data but show moderate PM 2.5 levels. These trends highlight diverse air quality 
conditions in West Asia, with significant variability and incomplete monitoring in several 

countries. The incomplete data for several countries emphasizes the need for more detailed 

monitoring to fully understand regional air quality dynamics. 

 

4.1.6. Overall Asia Trends 

 

Figure 6 illustrates the temporal trends of average PM 2.5 levels across different regions in Asia 
from 2018 to 2023. The data showcases varying patterns of PM 2.5 levels, reflecting the diverse 

environmental conditions and pollution control efforts within the continent. 

 

 
 

Figure 6. Temporal Trends of PM 2.5 Levels in Overall Asia (2018 - 2023) 

 
South Asia has the highest PM 2.5 levels among all regions, showing a slight decline from 2018 

to 2020, but rising again from 2022 to 2023. Central Asia experiences fluctuations, peaking in 

2021, then declining as pollution control measures likely took effect. Southeast Asia’s PM 2.5 
levels steadily increase until peaking in 2021, followed by a decline, suggesting improved air 

quality due to stricter regulations. East Asia and West Asia maintain the lowest PM 2.5 levels, 

with stable trends; however, East Asia shows a slight rise post-2021, while West Asia remains 

steady after a minor increase in 2019. The diverse trends observed across the different regions of 
Asia highlight the varying impact of air pollution across the continent. However, the gaps in data 

for countries such as the Maldives, Kyrgyzstan, and more limit the ability to draw comprehensive 

conclusions for the entire region. Future research should aim to address these data gaps, either 
through improved monitoring or statistical methods like imputation, to ensure more robust 

assessments and informed policymaking. The overall trends suggest that while some regions have 

made significant strides in improving air quality, others continue to face challenges, necessitating 

ongoing and targeted efforts to reduce PM 2.5 levels and protect public health. 
 

4.2. Death Rate Analysis 
 

4.2.1. Regional Death Rate Trends (2018-2021) 

 

From 2018 to 2021, death rates due to air pollution varied significantly across Asia as shown in 
Figure 7. South Asia consistently recorded the highest death rates, reflecting severe pollution 
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impacts in the region. Central Asia also exhibited high death rates, while Southeast and West 
Asia maintained moderate levels with some fluctuations. East Asia consistently had the lowest 

death rates, suggesting effective pollution control measures. In 2019, South Asia continued to 

have the highest rates, while Central Asia saw a slight reduction. A general decline in death rates 

was observed in 2020 across most regions, but rates increased again in 2021, particularly in 
Southeast and Central Asia. Overall, these trends underscore the persistent challenge of managing 

air pollution and its health impacts, especially in South Asia. 

 

 
 

Figure 7. Death Rate of Overall Asia (2018 - 2021) 

 

4.2.2. Death Rate Trends in South Asia (2018-2021) 

 
The line plot in Figure 8 for death rates in South Asian countries from 2018 to 2021 shows that 

Nepal consistently has the highest death rates throughout the period. Pakistan follows, with India 

and Bangladesh showing slightly lower but still relatively high death rates. Sri Lanka exhibits a 
moderate trend, while Maldives consistently has the lowest death rates among the countries. The 

trends indicate that the countries with higher death rates have remained fairly stable, with only 

slight fluctuations over the years. 

 

 
 

Figure 8. Death Rate of South Asia (2018 - 2021) 
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4.3. Correlation Analysis 
 

In this section, we explored the relationships between PM 2.5 levels, population density, and 

death rates across various regions in Asia. By examining these correlations, we aim to uncover 
significant patterns and insights into how air pollution impacts different regions and populations. 

 

4.3.1. Correlation Between PM 2.5 Levels and Population Density 
 

This analysis examined the relationship between population density and PM 2.5 levels for 2023 

across different regions to see if higher population densities correlate with increased air pollution. 

The correlation coefficient was approximately -0.20, indicating a weak negative relationship. 
This suggests that regions with higher population densities do not necessarily have higher PM 2.5 

levels. The heatmap visualization shown in Figure 9 confirmed that other factors, such as 

geography, industrial activities, and local environmental policies, might have a more substantial 
impact on air pollution than population density alone. These findings imply that effective policy 

interventions should consider multiple factors beyond population density to address air quality 

issues. 
 

 
 

Figure 9. Correlation Matrix of PM 2.5 Levels and Population Density 

 

4.3.2. Correlation Between Average PM 2.5 Levels and Average Death Rates 

 

The correlation between average PM 2.5 levels from 2018 to 2023 and death rates from 2018 to 
2021 is 0.63, as shown in Figure 10, indicating a moderate positive link between higher pollution 

and higher mortality. In comparison, the correlation of 0.57, was based on data from 2018 to 

2021 alone. The stronger correlation with the more recent data suggests a growing impact of 

sustained high pollution levels on health, emphasizing the importance of including the latest data 
for a more accurate assessment. 

 

 
 

Figure 10. Correlation Matrix of Average PM 2.5 Levels (2018 - 2023 and 2018 

- 2021) and Average Death Rate (2018 - 2021) 
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4.4. Clustering Analysis of PM 2.5 Levels 
 

The clustering analysis aimed to categorize Asian countries based on their PM 2.5 levels in 2023 

using the K-Means algorithm. The primary objective was to identify distinct clusters that 
represent different levels of air pollution, categorized as low, moderate, and high pollution. The 

Elbow Method, illustrated in Figure 11, identified three as the optimal number of clusters. Each 

cluster was labelled according to the PM 2.5 levels: “Low Pollution,” “Moderate Pollution,” and 
“High Pollution.” 

 
 

Figure 11. Elbow Method for Optimal k 

 

 
 

Figure 12. PM 2.5 Levels with Corrected Clusters 
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The results of the clustering are visualized in Figure 12, where countries are plotted against their 
PM 2.5 levels in 2023, color-coded by their respective cluster labels. This visualization 

effectively differentiates the countries based on their pollution levels, with each cluster 

representing a distinct range of PM 2.5 levels. Table I summarizes the PM 2.5 level ranges 

corresponding to each cluster label. 
  

Table 1.  Cluster centres based on pm 2.5 levels (2023) 

 
Cluster levels PM 2.5 levels (2023) 

Low pollution 20.74 

Moderate pollution 41.09 

High pollution 76.80 

 

This clustering analysis not only provides a clear categorization of countries based on their PM 
2.5 pollution levels but also offers a framework for targeted policy interventions. For countries in 

the “High Pollution” cluster, immediate actions such as stricter emission controls, public health 

advisories, and investment in air purification systems may be necessary. For the “Moderate 

Pollution” cluster, governments could focus on implementing regulatory measures to curb 
pollution sources, while also monitoring the air quality closely. Finally, countries in the “Low 

Pollution” cluster might prioritize sustaining their current pollution levels by reinforcing policies 

that promote cleaner technologies and renewable energy sources. The clustering results, 
therefore, offer valuable insights for policymakers, enabling them to design region-specific and 

pollution level-tailored strategies to improve air quality across Asia. 

 

4.5. Prediction (ARIMA) and Evaluation Metrics 
 

1) ARIMA Model Training and Forecasting Process: The ARIMA (AutoRegressive 
Integrated Moving Average) model was utilized to forecast PM 2.5 levels for 2023 using 

2018- 2022 data for training, with predictions compared to actual 2023 values to assess 

accuracy. For 2024 predictions, the model was trained on 2018-2023 data, but these 

forecasts await validation as actual 2024 data is unavailable. 
2) Evaluation Metrics for 2023: The performance of the ARIMA model was assessed using 

the following metrics: 

 
Table 2.  Evaluation metrics for the ARIMA model in 2023 

 
Metric Value 

Mean Absolute Error (MAE) 3.99 

Mean Squared Error (MSE) 33.80 

Root Mean Squared Error (RMSE) 5.81 

R-squared (R²) 0.86 

 
Table 2 shows ARIMA model’s performance for 2023 was evaluated using several metrics. The 

Mean Absolute Error (MAE) of 3.99 units, Mean Squared Error (MSE) of 33.80, and Root Mean 

Squared Error (RMSE) of 5.81 suggest that the model’s predictions were generally accurate, with 
lower values indicating fewer and smaller errors. The R² value of 86% shows that the model 

effectively explained the variance in PM 2.5 levels for 2023. These metrics indicate accurate 

predictions and strong performance in capturing PM 2.5 variance. Further validation with 2024 
data is required to assess long-term accuracy. 

 



International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.1, February 2025 

39 

5. CONCLUSION 
 
This paper analyzes PM 2.5 levels across Asia from 2019 to 2023 using the ARIMA model, 

highlighting trends and regional disparities among 36 countries. Countries were classified into 

low, moderate, and high pollution levels for 2023, providing insights to guide policy 

development. While this study focuses on Asia, future research will extend globally to include 
regions like Europe and Africa. Additionally, integrating other predictive algorithms is planned to 

enhance analysis robustness and provide a more comprehensive comparison. These findings 

underscore the importance of continuous air quality monitoring and predictive modeling to assess 
health impacts and inform mitigation strategies. Ultimately, the study advocates for collaborative, 

data-driven approaches among policymakers, environmental agencies, and researchers to address 

air pollution in rapidly urbanizing regions. 

 

REFERENCES 
 
[1] Lee, S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5, 

pp120-122. 

[2] Gizem, Aksahya & Ayese, Ozcan  (2009)  Coomunications & Networks,  Network Books,  ABC    

Publishers. 

[3] IQAir (2023): World Air Quality Report 2023. 

[4] Greenstone, Michael, et al., (2025) “Lower pollution, longer lives: life expectancy gains if India 

reduced particulate matter pollution”, Economic and Political Weekly, pp 40-46. 

[5] Ghude, Sachin D., et al., (2016) “Premature mortality in India due to PM 2.5 and ozone exposure”, 

Geophysical Research Letters, Vol. 43 No. 9, PP 4650-4658. 

[6] AirVisual, IQAir, (2020) “World Air Quality Report. 2018”. 

[7] Kumar, Rajesh, et al., (2018) “How will air quality change in South Asia by 2050?”, Journal of 
Geophysical Research: Atmospheres, Vo. 123, No. 3, pp 1840-1864. 

[8] Lee, Hsiang-He, et al., (2018) “Impacts of air pollutants from fire and non-fire emissions on the 

regional air quality in Southeast Asia”, Atmospheric Chemistry and Physics, Vol. 18, No. 9, pp 6141-

6156. 

[9] Lee, Hsiang-He, Rotem Z. Bar-Or, and Chien Wang, (2017) “Biomass burning aerosols and the low-

visibility events in Southeast Asia”, Atmospheric Chemistry and Physics, Vol. 17, No. 2, pp 965-980. 

[10] Elbaz, Khalid, et al., (2023) “Spatiotemporal air quality forecasting and health risk assessment over 

smart city of NEOM”, Chemosphere, Vol. 13, pp 137636. 

[11] Abdul Jabbar, Saima, et al., (2022) “Air quality, pollution and sustainability trends in South Asia: a 

population-based study”, International journal of environmental research and public health, Vol. 19, 

No. 12, pp 7534. 

[12] Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric 
environment, 43(1), 51-63. 

[13] Heydari, A., Majidi Nezhad, M., Astiaso Garcia, D., Keynia, F., & De Santoli, L. (2022). Air 

pollution forecasting application based on deep learning model and optimization algorithm. Clean 

Technologies and Environmental Policy, 1-15. 

[14] Mao, W., Wang, W., Jiao, L., Zhao, S., & Liu, A. (2021). Modeling air quality prediction using a 

deep learning approach: Method optimization and evaluation. Sustainable Cities and Society, 65, 

102567. 

[15] Guo, Z., Jing, X., Ling, Y., Yang, Y., Jing, N., Yuan, R., & Liu, Y. (2024). Optimized air quality 

management based on air quality index prediction and air pollutants identification in representative 

cities in China. Scientific Reports, 14(1), 17923. 

[16] Chaturvedi, P. (2024). Air Quality Prediction System Using Machine Learning Models. Water Air, & 
Soil Pollution, 235(9), 578. 

[17] Dataset: World Air Pollution Data. 

 

 

 

 



International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.1, February 2025 

40 

AUTHORS 
 

Anika Rahman: Anika Rahman completed her bachelor's degree from 

Ahasanullah University of Science and Technology, Bangladesh in the 

Department of Computer Science and Engineering and her Master’s degree 
from BRAC University, Bangladesh. Currently, she is working as a Lecturer 

in the Department of Computer Science and Engineering at Stamford 

University Bangladesh. Her research area focuses on AI, machine learning, 
and Data Science. 

 

Dr. Mst. Taskia Khatun: Dr. Mst. Taskia Khatun completed her bachelor's 
degree in Computer  Science and Engineering at Rajshahi University of 

Engineering & Technology, Bangladesh. After That, she completed her 

Master’s and PhD from The University of Tokyo, Japan. Currently, she is 

working as an Assistant Professor in the Department of Software Engineering 
at Daffodil International University, Bangladesh. Her research area focuses on 

project management, system analysis and design, simulation and modelling, 

data science. 
 

 

 
 


	Abstract
	Keywords
	PM 2.5, Air Pollution, Asia, Temporal Analysis, ARIMA, K-means Clustering


