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ABSTRACT 
 

This project aims to develop an automated diagnostic system that leverages genetic algorithms (GAs) for 

analyzing electroneurodiagnostic (END) data, including electroencephalograms (EEG) and 

electromyograms (EMG). The growing complexity of END data poses significant challenges for accurate 

diagnosis and timely intervention in neurological disorders. By utilizing genetic algorithms, we aim to 

enhance the feature selection process, optimizing the identification of relevant patterns associated with 

various neurological conditions. The system will undergo rigorous training using a diverse dataset, 
allowing it to recognize and classify abnormalities effectively. Initial results indicate that GAs can 

significantly improve diagnostic accuracy compared to traditional methods, reducing the likelihood of 

misdiagnosis and facilitating early intervention. The project also aims to establish a user-friendly interface 

for clinicians, enabling them to interpret results intuitively. This innovative approach enhances diagnostic 

capabilities and contributes to neuroinformatics, promoting the integration of artificial intelligence in 

clinical practice. 
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1. INTRODUCTION 
 

Neurological disorders are among the leading causes of disability worldwide, with conditions 

such as epilepsy [1] Accurate diagnosis and timely intervention are critical to improving patient 
outcomes, yet these remain significant challenges in clinical practice .[2], [3] The complexity and 

volume of electroneurodiagnostic (END) data, such as electroencephalograms (EEG) and 

electromyograms (EMG), add layers of difficulty for healthcare professionals, requiring both 

specialized expertise and advanced computational tools [4]. 
 

Traditional diagnostic methods often rely on manual analysis, which is time-consuming and 

prone to human error. For instance, an experienced neurologist may need hours to interpret subtle 
patterns in EEG data to confirm a diagnosis of epilepsy. Similarly, analyzing EMG data for 

neuromuscular disorders involves detecting faint anomalies that may not be easily 

distinguishable. As a result, an urgent need is for automated systems capable of efficiently 
processing and interpreting END data with high accuracy [4], [5].  In recent years, artificial 

intelligence (AI) and machine learning (ML) have emerged as transformative tools in medical 

diagnostics [6]. These technologies can analyze vast amounts of data, uncovering patterns and 

correlations often invisible to human observers. Among AI methodologies, genetic algorithms 
(GAs) offer a particularly compelling approach for optimizing the diagnostic process. Inspired by 
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the principles of natural selection, GAs is highly effective in identifying the most relevant 
features within complex datasets, making them an ideal choice for END data analysis [7]. 

 

The application of GAs to END data presents numerous opportunities. First, GAs can address the 

issue of high dimensionality by selecting only the most pertinent features for diagnosis. This not 
only reduces computational complexity but also enhances the interpretability of results. Second, 

GAs is inherently flexible, allowing them to adapt to diverse types of neurological data and 

conditions [8]. By integrating GAs into an automated diagnostic system, clinicians can benefit 
from a tool that provides real-time insights, reducing the burden of manual analysis and 

improving diagnostic accuracy [9].  Despite these advantages, implementing GAs in clinical 

settings takes time and effort. For instance, the performance of GAs heavily depends on the 
quality and diversity of the training dataset. More accurate data must be needed to avoid 

suboptimal results, underscoring the importance of rigorous dataset curation. Additionally, 

integrating such systems into clinical workflows requires careful consideration of usability and 

interpretability, as the goal is to assist clinicians rather than replace them [10]. 
 

This chapter explores the development of an automated diagnostic system that utilizes genetic 

algorithms to analyze END data. The proposed system aims to enhance the diagnostic process by 
addressing key challenges, including feature selection, noise reduction, and classification 

accuracy. By leveraging a robust dataset and state-of-the-art computational techniques, the 

system is designed to classify neurological abnormalities effectively and present results in an 
accessible manner for clinicians. The following sections provide an overview of the theoretical 

foundations of genetic algorithms and their relevance to END data analysis. The chapter also 

details the methodology employed in developing the diagnostic system, discusses the results of 

initial experiments, and highlights the implications for clinical practice and future research. 
Through this work, we aim to demonstrate the potential of GAs to revolutionize the field of 

neurodiagnostics, paving the way for more accurate and efficient medical interventions. 

 

2. BACKGROUND  
 

The background for this project integrates foundational knowledge about electroneurodiagnostic 

data, the specific challenges involved in its analysis, and the potential of genetic algorithms 

(GAs) to overcome these challenges. This section provides context for understanding the 
relevance of GAs in developing an automated diagnostic system and establishes the groundwork 

for the methodologies discussed in subsequent sections. 

 

2.1 Electroneurodiagnostic Data 

 

Electroneurodiagnostic (END) tests are crucial in diagnosing and managing neurological 
disorders. Two of the most used modalities in END are electroencephalograms (EEG) and 

electromyograms (EMG) [11].  EEG: This test monitors electrical activity in the brain by placing 

electrodes on the scalp. It is primarily used to detect abnormalities associated with epilepsy, sleep 
disorders, brain injuries, and other conditions. EEG data is characterized by its dynamic and 

complex waveforms, including alpha, beta, delta, and theta waves, which are analyzed to detect 

irregularities [12]. EMG: This diagnostic tool measures the electrical activity of muscles in 

response to nerve stimulation. EMGs are essential for diagnosing neuromuscular disorders such 
as amyotrophic lateral sclerosis (ALS), myasthenia gravis, and muscular dystrophy. The data 

typically includes bursts of electrical signals indicating muscle response under voluntary and 

involuntary conditions [13].  END data is inherently high-dimensional and noisy, requiring 
careful preprocessing to extract meaningful insights. While traditionally analyzed manually by 
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neurologists, the increasing availability of large datasets calls for automated solutions to 
streamline the diagnostic process [14].  

 

2.2 Challenges in END Analysis 
 

Analyzing END data involves overcoming several critical challenges, which this project seeks to 

address through the implementation of GAs: 
 

High Dimensionality: END data comprises numerous features, including frequency bands, 

amplitudes, and temporal dynamics. For example, an EEG recording can contain hundreds of 

data points per second across multiple channels. This sheer volume of information makes manual 
analysis impractical and error prone. Selecting the most relevant features from such data is a 

nontrivial task [15]. Neurophysiological diagnostic signals (END) are often contaminated by 

noise from various sources, including electrical interference, muscle movements, and 
environmental factors. For instance, an electroencephalogram (EEG) signal can contain artifacts 

from blinking or head movements, requiring effective preprocessing to filter out this noise 

without losing critical diagnostic information.  Additionally, many neurological disorders 
manifest as subtle changes in END signals, such as epileptic seizures, which may be indicated by 

specific waveform spikes occurring sporadically. Detecting such patterns demands sophisticated 

analytical techniques to distinguish pathological signals from normal variations. Another 

significant challenge is inter-patient variability, as differences in anatomy, physiology, and the 
manifestation of neurological conditions can lead to substantial variations in END data across 

patients. Therefore, a diagnostic system must be robust enough to generalize across diverse 

populations while maintaining sensitivity to individual-specific anomalies [16], [17]. 
 

2.3 Genetic Algorithms 
 
Genetic algorithms (GAs) are a subset of evolutionary algorithms inspired by the principles of 

natural selection. They are particularly effective for optimization problems and are widely used in 

fields ranging from engineering to bioinformatics. 
 

Core Principles of GAs: In genetic algorithms (GAs), the process begins with selecting candidate 

solutions, which are represented as chromosomes, and these solutions are evaluated based on a 

fitness function to determine their performance. The best-performing solutions are then chosen 
for reproduction, ensuring that the most promising candidates are passed on to the next 

generation. During crossover, pairs of selected solutions combine to produce offspring, 

exchanging genetic information to explore new regions of the solution space, which allows the 
algorithm to search for better solutions. Additionally, mutation introduces small random changes 

to offspring solutions to maintain diversity within the population and prevent premature 

convergence. This ensures the search space remains wide, and the algorithm is not stuck in 
suboptimal solutions. This iterative process of selection, crossover, and mutation is particularly 

relevant to feature selection in END (electro-neurodiagnostic) analysis, where the goal is to 

reduce the dimensionality of the data while improving classification accuracy [18]. Genetic 

algorithms are particularly well-suited for this task, as they iteratively refine a population of 
feature subsets, converging toward an optimal solution that strikes the right balance between 

relevant and redundant features, ultimately enhancing diagnostic systems' efficiency and 

accuracy [19]. 
 

Genetic algorithms (GAs) offer several advantages when applied to END (electro-neuro 

diagnostic) data analysis, making them highly suitable for tackling the complexities inherent in 
such data. One of their key strengths is adaptability, as GAs are capable of handling nonlinear 

relationships and intricate feature interactions, which are commonly found in END data. This 
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adaptability enables GAs to capture complex patterns that traditional methods may miss [20]. 
Furthermore, GAs are scalable, meaning they can efficiently process large datasets without being 

hindered by the computational limitations that typically affect conventional approaches. This 

scalability makes them ideal for real-world applications where the volume of data can be vast and 

diverse.  
 

Additionally, GAs are robust and resilient to noise and missing data, which are frequent 

challenges in clinical environments where data quality can vary, making them particularly 
effective for practical use in clinical diagnostics. Although GAs have been successfully applied in 

various biomedical fields, such as gene expression analysis, image segmentation, and disease risk 

prediction, their application to END data analysis still needs to be explored. This opens an 
exciting opportunity for innovation, as integrating GAs into END analysis could lead to more 

accurate and efficient diagnostic systems, paving the way for advancements in personalized 

medicine and neurological disorder detection [21]. 

 

3. METHODOLOGY  
 
The methodology for developing the automated diagnostic system involves a structured approach 

combining data preprocessing, feature selection, classification, and user interface design. This 

section provides a detailed description of the system's architecture, the role of genetic algorithms 

(GAs) in feature selection, the design of the classification model, and the training and validation 
process. 

 

3.1 System Architecture 
 

The proposed system is designed as a multi-stage pipeline, integrating several components to 

analyze electroneurodiagnostic (END) data effectively: 
 

 
Figure 1 System Architecture 

 

The system for analyzing END (electro-neuro diagnostic) data starts with data acquisition from 
various sources, including publicly available datasets, clinical studies, and hospital archives, 

which provide EEG and EMG recordings collected under controlled conditions. However, raw 

END data is often contaminated by noise and artifacts, so advanced signal processing techniques, 

such as bandpass filtering, independent component analysis (ICA), and wavelet transformation, 
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are applied to filter out unwanted noise while preserving diagnostically relevant features. After 
noise filtering, the data is segmented into more minor, manageable epochs labeled according to 

clinical diagnoses to create a robust training dataset. Feature extraction follows, where relevant 

characteristics of the underlying signals are identified; for EEG data, these include power spectral 

density (PSD), coherence, and frequency band powers like alpha, beta, delta, and theta waves. In 
contrast, features like root mean square (RMS), mean frequency, and signal entropy are 

computed for EMG data. A genetic algorithm (GA) is used to optimize feature selection, which 

iteratively refines the population of feature subsets to identify the most informative features, 
reducing dimensionality and improving classification accuracy [22]. A machine learning 

classifier, such as support vector machines (SVM), convolutional neural networks (CNNs), or 

ensemble methods like random forests, is then trained using the selected features to recognize 
patterns indicative of specific neurological conditions [23], [24]. Finally, a clinician-friendly user 

interface is developed to present the diagnostic results, which includes visualizations like 

spectrograms, annotated waveforms, and classification outputs, allowing clinicians to interpret 

the results and make informed decisions intuitively. 
 

3.2 Feature Selection Using Genetic Algorithms 
 

Feature selection plays a pivotal role in enhancing the performance of a system, as it directly 

influences both computational complexity and classification accuracy, particularly in high-

dimensional and noisy data. Genetic algorithms (GAs) are well-suited for this task because of 
their ability to efficiently search through vast feature spaces and handle complex, noisy data. The 

process begins with initialization, generating a population of chromosomes, each representing a 

subset of features. These chromosomes are encoded as binary strings, with each bit indicating the 
inclusion (1) or exclusion (0) of a particular feature. Next, the fitness of each chromosome is 

evaluated using a predefined fitness function that considers classification accuracy, 

computational efficiency, and feature redundancy, ensuring that the selected features contribute 
to a model that is both accurate and efficient. The top-performing chromosomes, those that 

achieve the highest fitness scores, are then chosen through roulette wheel selection or tournament 

selection, which also helps maintain diversity in the population. To explore new regions of the 

solution space and encourage genetic diversity, selected chromosomes undergo crossover, 
exchanging genetic material to produce offspring. At the same time, mutation introduces random 

changes to the offspring chromosomes. This process helps prevent premature convergence and 

enhances the algorithm’s ability to explore various combinations of features. Over multiple 
generations, the GA iteratively refines the population, gradually converging on an optimal feature 

subset that maximizes classification accuracy while minimizing redundancy and computational 

cost. The algorithm terminates once a convergence criterion, such as a predefined maximum 

number of generations or a plateau in fitness improvement, is reached, ensuring that the feature 
selection process is efficient and effective. 

 

3.3 Classification Model 
 

The classification model serves as the core component in identifying abnormalities in END 

(electro-neuro diagnostic) data, as it utilizes the features selected by the genetic algorithm (GA) 
to train and evaluate its performance. Several classifiers are tested to determine the most effective 

one for the specific characteristics of the data. These include Support Vector Machines (SVM), 

which are particularly effective for both linearly separable and nonlinear data; Convolutional 
Neural Networks (CNN), which are well-suited for capturing complex spatial and temporal 

patterns in END signals; and Random Forests, which are robust to overfitting and can handle 

noisy datasets effectively. The training process involves using labeled datasets with features 
optimized by the GA, where the model's parameters are adjusted to minimize prediction errors on 

the training data. This process ensures the classifier learns to generalize to new, unseen data well. 
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The model’s performance is then evaluated using a variety of metrics, including accuracy, 
precision, recall, F1-score, and the area under the receiver operating characteristic curve (AUC-

ROC), which provide a comprehensive view of how well the model distinguishes between 

normal and abnormal patterns in the END data. These metrics are crucial in assessing the model’s 

effectiveness, ensuring it can make reliable and accurate predictions in real-world clinical 
applications. The classification model can be fine-tuned by evaluating all these aspects to deliver 

the highest possible diagnostic performance, addressing the challenges of analyzing complex and 

noisy END data. 
 

3.4 Training and Validation 
 
A thorough training and validation process ensures the diagnostic system is reliable and can 

generalize well. First, the dataset is divided into training, validation, and test subsets using 

stratified sampling, which ensures that different neurological conditions are evenly represented 
across all subsets. K-fold cross-validation is then used to minimize overfitting and provide a more 

accurate estimate of the model's performance. This method involves splitting the dataset into K 

parts, training the model on K-1 parts, and testing it on the remaining part. Additionally, 
hyperparameters for the genetic algorithm (GA) and the classifier are optimized through grid 

search and random search techniques, with the best settings selected based on validation 

performance. Finally, the model is tested on an independent dataset to assess its performance on 

unseen data, ensuring it can accurately predict neurological conditions in real-world scenarios. 

  

4. RESULTS AND DISCUSSION  
 

This section presents the proposed system's implementation outcomes and discusses their 
implications in clinical diagnostics. The results are evaluated against key metrics such as 

accuracy, efficiency, robustness, and usability. Additionally, the findings are compared with 

traditional diagnostic methods to highlight the advantages of using genetic algorithms (GAs) in 

analyzing electroneurodiagnostic (END) data. 
 

4.1 Performance of Genetic Algorithms 
 

The genetic algorithm (GA) significantly enhanced the system's feature selection process and 

overall diagnostic accuracy. One of the key improvements was in dimensionality reduction. 

Applying the GA reduced the number of features by approximately 60–70% compared to the 
original dataset. For example, EEG data that initially contained over 200 features was optimized 

down to around 60 features, all while maintaining high diagnostic performance. This reduction in 

the number of features made the system more efficient. It resulted in faster processing times and 
reduced computational requirements, which are crucial for enabling real-time analysis, especially 

in clinical environments where rapid decision-making is vital. 

 

In addition to reducing dimensionality, the GA-based feature selection led to a significant 
improvement in classification accuracy. Models trained on the optimized features consistently 

outperformed those trained on features selected manually or through heuristic methods. The 

classification accuracy improved by 12–18% across various datasets. Specifically, for EEG data 
used in epilepsy detection, the system achieved an accuracy of 92.5%, compared to 80% when 

using traditional methods. Furthermore, the GA demonstrated efficient convergence, reaching an 

optimal subset of features within 50–75 generations, depending on the dataset. The use of diverse 
initialization techniques and effective mutation strategies ensured that the GA converged quickly 

without getting stuck in suboptimal solutions, making it a highly effective tool for feature 

selection in complex END data analysis. 
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Figure 2 "Performance of Genetic Algorithms 

 

After applying the genetic algorithm, the bar graph compares the initial number of features 
against the reduced number of features. On the x-axis, different datasets (e.g., EEG, EMG, 

combined) are represented, while the y-axis represents the number of features. Each dataset has 

two sets of bars: one showing the initial number of features and the other displaying the number 

of features selected after the genetic algorithm process. The reduction achieved is visualized by 
the difference in heights between the two bars for each dataset. A smaller bar height in the 

"selected features" category indicates a significant reduction in feature count while maintaining 

or improving classification accuracy. This graph highlights the genetic algorithm's effectiveness 
in reducing the dataset's dimensionality while optimizing the feature set for better performance. 

 

 

 
 

Figure 3 confusion matrix 
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The confusion matrix figure visually illustrates the performance of a classification model by 
comparing accurate labels (actual outcomes) with predicted labels. It consists of a grid where 

rows represent actual classes and columns represent predicted classes. The diagonal elements 

show true positives (TP) and true negatives (TN), indicating correct predictions, while the off-

diagonal elements represent false positives (FP) and false negatives (FN), indicating incorrect 
predictions. These values are essential for calculating performance metrics like accuracy, 

precision, recall, and F1-score, providing a comprehensive understanding of the model's 

classification accuracy and errors. 
 

4.2 Comparison with Traditional Methods 
 
The proposed system outperformed traditional diagnostic methods that rely on manual analysis 

and heuristic feature selection. One of the main advantages of the GA-based system is its higher 

accuracy. Conventional methods often depend on domain expertise for feature selection, which 
can be subjective and inconsistent. In contrast, the GA system uses a systematic and objective 

approach to select features, leading to better diagnostic performance. For example, in diagnosing 

neuromuscular disorders using EMG data, the system achieved an accuracy of 89%, significantly 
higher than the 76% accuracy provided by conventional methods. The GA-based system also 

demonstrated greater robustness to noise, which is common in END data. The system could 

better handle noisy and corrupted data by prioritizing features that are less sensitive to signal 

interference. Additionally, the system improved efficiency by processing data in under 10 
minutes, compared to the hours required by traditional methods to analyze a single patient's data. 

 
Table 1 Comparison with Traditional Methods 

 

 
 

The comparative table presents key performance metrics—precision, processing time, and noise 

robustness—highlighting the differences between traditional methods and the proposed system. 
Precision measures the model's accuracy in correctly identifying positive cases, showing a 

significant improvement in the proposed system compared to conventional methods. Processing 

time quantifies the efficiency, demonstrating that the proposed system drastically reduces the 

time required to analyze data, making it more suitable for real-time applications. Robustness to 
noise assesses the model's ability to perform accurately despite signal interference. The proposed 

system shows higher robustness due to its optimized feature selection and noise reduction 

techniques. Overall, the table underscores the advantages of the proposed system in terms of 
accuracy, efficiency, and performance under noisy conditions compared to traditional 

approaches. 

 
The system offers several significant benefits for clinical practice, addressing common challenges 

in diagnosing neurological conditions. Its ability to process END data quickly enables real-time 

diagnostic support, which is especially important for conditions like epilepsy, where immediate 

intervention can be lifesaving. Moreover, using GAs for feature selection reduces the likelihood 
of misdiagnosis, particularly in cases where symptoms may be subtle or overlap with other 

conditions. The system is also designed with a user-friendly interface, allowing clinicians with 

varying levels of expertise to use it effectively, which is particularly beneficial in areas with 
limited access to neurology specialists. Furthermore, the system’s adaptability to different types 

of END data and neurological conditions makes it highly scalable and suitable for various clinical 

applications. 
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4.4 Limitations and Challenges 
 

While the results of the system are promising, several challenges and limitations remain. One key 
issue is the diversity of the dataset; the system's performance relies heavily on the quality and 

representativeness of the training data, and a limited representation of specific demographics or 

conditions may affect its ability to generalize across different populations. Future work should 
focus on curating larger and more diverse datasets to address this. Another challenge is the 

interpretability of the results. Although the system provides accurate classifications, the reasoning 

behind its decisions is not always clear, and improving transparency through techniques like 

feature importance metrics or visualizations is essential. Finally, for the system to be adopted in 
clinical settings, it must be integrated with existing electronic health record (EHR) systems and 

comply with regulatory standards, which presents technical and logistical hurdles that must be 

addressed for widespread use. 
 

4.5 Future Directions 
 
Building on the findings of this study, several promising avenues for future research and 

development are proposed to enhance the system’s capabilities and expand its applicability. One 

key direction is the expansion to additional data modalities, such as magnetoencephalograms 
(MEG) and functional MRI (fMRI), which could provide more prosperous and more diverse data, 

allowing the system to capture a broader range of neurological conditions and improve diagnostic 

accuracy. Another promising area is the development of hybrid models that combine genetic 
algorithms (GAs) with deep learning techniques, like recurrent neural networks (RNNs) or 

transformers. This combination could significantly enhance the system's ability to process 

complex temporal and spatial dependencies in electro-neurodiagnostic (END) data, leading to 

more accurate and dynamic analyses. Additionally, transitioning to a cloud-based version of the 
system could offer substantial benefits, enabling remote diagnostics and providing greater 

accessibility to clinicians in underserved or rural areas with limited access to specialized care. 

Finally, conducting real-world testing through collaborations with hospitals and clinics is 
essential to evaluate the system’s practical utility and effectiveness in real-world settings, 

uncovering valuable insights into its strengths and identifying areas for further improvement and 

refinement. These proposed advancements could help make the system more versatile, accessible, 

and impactful in diagnosing neurological conditions. 
 

4. CONCLUSIONS 

 

Developing an automated diagnostic system using genetic algorithms (GAs) for analyzing 
electroneurodiagnostic (END) data represents a significant step forward in neuroinformatics. This 

system effectively addresses key challenges in diagnostics, such as the complexity of high-

dimensional data, interference from noise, and the need for accurate and efficient feature 

selection. Using GAs, the system enhances diagnostic accuracy, reduces the risk of misdiagnosis, 
and supports timely interventions for neurological disorders. The ability to optimize features 

automatically allows for more efficient data processing and improved decision-making, 

particularly in time-sensitive clinical situations. 
 

One of the key achievements of the system is its improved feature selection process. By using 

GAs, the system successfully identifies the most relevant features from complex END data, 
reducing the computational burden and improving classification accuracy. This method is more 

effective than traditional approaches relying on manual or heuristic feature selection. 

Additionally, the system’s diagnostic performance was notably enhanced, with the GA 
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integration leading to higher accuracy and robustness across multiple test cases. Whether 
analyzing EEG or EMG data, the system consistently outperformed conventional methods, 

demonstrating flexibility and adaptability to various neurological conditions. 

 

The system’s ability to process data in real-time also has significant implications for clinical 
practice. In critical situations, such as diagnosing epilepsy or neuromuscular disorders, the 

system’s quick processing capability enables timely and informed decision-making. This feature 

is particularly valuable in urgent clinical settings where rapid diagnosis is crucial. Furthermore, 
the system’s user-friendly interface allows clinicians with varying levels of expertise to quickly 

interpret complex neurological data, making advanced diagnostic tools accessible and reducing 

the burden on specialists. This support enables healthcare providers to focus on patient care, 
relying on the system for preliminary analysis. 

 

However, the system still faces some limitations that need to be addressed for further 

improvement. The generalizability of the system is influenced by the quality and diversity of the 
training dataset, meaning it should include a broader range of conditions, demographics, and 

environments. Another challenge is the explainability of the system’s decisions. For clinicians to 

fully trust the system, they need clear insights into how diagnostic decisions are made. Future 
updates should focus on enhancing interpretability. Additionally, for broader clinical adoption, 

the system must integrate smoothly with existing hospital infrastructure, such as electronic health 

records (EHRs), and meet regulatory standards. These challenges must be addressed to realize the 
system’s potential in clinical settings fully. 
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