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Abstract. As distributed processing environments grow in complexity, accurate performance prediction
models are essential to optimize system efficiency and resource allocation. However, modern computing
workloads typically exhibit a wide variety of characteristics, which hinders optimized resource config-
urations. Diverse approaches have been suggested to tackle the challenge of workload characterization,
employing various parameters for performance modeling in the process. To expand on this objective, this
paper extensively surveys existing performance modeling methodologies and introduces a 5+1 layer classifi-
cation model designed to enhance the accuracy of predictive models by classifying and reflecting on relevant
modeling parameters. We conducted a systematic literature review to identify and analyze the role of six
key layers: Big Data Framework, Performance, Hardware, Data, User Application, and Virtualization.
Our findings reveal that while the Big Data Framework and Performance Layers are foundational, predictive
accuracy improves when combined with complementary layers, especially the Data Layer, which highlights
the impact of data characteristics such as size and distribution. The Hardware Layer provides critical
insights into system limitations, while the emerging Virtualization Layer reflects the increasing importance
of virtualized, potentially cloud-based environments. The proposed 5+1 layer classification model offers a
structured approach to capture and explain the complexity of distributed analytical workflows, providing
a nuanced framework for performance modeling. This layered classification model aims to support the
development of more robust, adaptable, and generalizable prediction models for use in cloud-based systems.
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1 Introduction

In recent years, the volume of data stored and processed in data centers has grown rapidly,
creating unprecedented challenges in data management. The increase is not limited solely
to size, but encompasses a spectrum of characteristics that introduce obstacles to efficient
data handling [65]. To keep up with this development, researchers are increasingly rely-
ing on sophisticated frameworks and specialized algorithms tailored to large-scale data
processing. Through continuous innovation, a variety of tools and methods have emerged,
providing valuable solutions to these challenges.

Among these advancements, distributed computing frameworks such as MapReduce [24],
Spark [99], and Flink [18] have become central in managing large amounts of data. These
frameworks leverage clusters of computing nodes to facilitate parallel and distributed data
processing, enabling scalability and meeting the complex demands of contemporary data
analytics. Data processing in these systems generally follows two main paradigms: stream-
ing and batch processing [72]. Streaming processing allows for real-time data analysis,
which is crucial for applications where immediacy is paramount. For example, Uber uses
Flink to process extensive real-time data streams generated by its applications, enabling
services such as surge pricing, fraud detection, and live ride tracking [27]. In contrast,
batch processing deals with large, finite datasets, processing them in bulk for analysis,
which is often more efficient for historical data analysis or intricate analytical tasks [85].

Batch processing, in particular, plays a key role in various domains, from healthcare to
e-Commerce [76,89]. However, predicting the performance of analytical batch jobs remains
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a significant challenge, as various characteristics of the workload impact performance, com-
plicating the identification of the most relevant factors [94], especially for completely new
workloads that have not yet been executed and observed. Many existing performance
models presuppose that tasks exhibit recurrence [83,81,6,69], an assumption that is often
backed by cluster trace analysis [56] of major infrastructure providers, but raises the ques-
tion of the exactness of recurrence. The conventional perspective on recurring jobs assumes
consistency across framework configurations, algorithm parameters, and data character-
istics in repeated executions, or at least similarity between datasets [15]. However, this
assumption does not always hold. Even for jobs scheduled at regular intervals, datasets can
fluctuate significantly in size and content. For example, a predictive algorithm may handle
data from varying days or times, each with its own granularities and peculiarities [83]. This
inconsistency between executions suggests that “recurrence” in data processing is more
nuanced than commonly assumed, highlighting the need for more sophisticated methods
to manage and predict performance in dynamic batch processing environments.

To advance research on developing robust performance models that can utilize data
from varied or similar workloads, we first sought to identify the key workload characteristics
commonly used in performance modeling for distributed analytic computing. For this, we
conducted a comprehensive systematic review of the existing literature, using the Web
of Science database to identify essential workload characteristics in this field. The review
resulted in the creation of the 5+1 layer classification model, a unified framework that
synthesizes and represents all relevant workload characteristics. Furthermore, we examined
the use of similarity metrics in these models to improve performance prediction but found
no instances where such metrics were applied. Our research results aim to offer researchers
and practitioners a comprehensive overview of best practices, observed trends, and further
optimization opportunities by consolidating and refining existing literature in this domain.

Outline. The paper is structured as follows. Section 2 discusses the relevant concepts
and related work. Section 3 describes the methodology adopted for this research and
outlines the systematic approach taken. Section 4 presents the strategy and results of
the exploratory systematic literature review, as well as derived future research directions.
Section 5 briefly discusses the threats to validity, whereas Section 6 concludes the paper.

2 Background and Related Work

This section presents the relevant concepts, ranging from big data analytics to performance
modeling, as well as the related work.

2.1 Big Data Analytics and Frameworks

In distributed computing, a batch processing job refers to large-scale data processing
tasks scheduled to run at specific times or intervals, processing historical data rather
than real-time inputs [48]. Such jobs typically handle updated datasets repeatedly [77]
and are automatically scheduled to fit organizational needs, such as daily or monthly
runs [98]. Batch processing suits tasks that can tolerate delays and have fixed start and
end times, allowing them to run during off-peak hours to optimize resource use and reduce
costs or environmental impact [14,90]. However, their scheduling flexibility is influenced
by constraints such as execution time and interruptibility [90]. Examples of batch process-
ing applications include the generation of user-specific recommendations, with companies
such as eBay employing this approach [89]. Research on Alibaba clusters shows that over
80.3% of batch applications are recurring, often involving multiple tasks completed within
hours, highlighting batch processing’s importance in managing periodic data-intensive

International Journal on Cybernetics & Informatics (IJCI) Vol.14, No.2, April 2025

52



jobs [56]. Streaming processing, on the contrary, involves real-time data input, process-
ing, and output, suitable for applications that require immediate insight, such as fraud
detection and network monitoring [47,26,27,75]. It is widely applied in environments that
continuously generate high-speed data, such as Internet of Things (IoT) devices and social
media feeds [14,30,3,17].

Scalability in modern data analytics is often achieved using dedicated distributed
dataflow frameworks like Apache Spark [99], Hadoop [24], and Flink [18], which enable
parallel data processing across multiple nodes. Such frameworks handle complexities such
as data distribution, scheduling, and fault tolerance, making them popular for various
tasks. Within such a framework, several components are vital for scalable data processing:

– The worker nodes execute tasks and store intermediate results, working in parallel
to process large datasets, while the master nodes manage the distribution of jobs
and monitor the progress of tasks to ensure accurate execution and elemental fault
tolerance [24,64,68,99].

– Tasks are the smallest units of work, processing parts of data in parallel to achieve
efficient computation [64,68,99].

– The execution slots on each worker node, defined by available CPU and memory,
dictate the number of concurrent tasks a node can handle [64,68,77].

Hadoop typically operates with two stages —Map and Reduce — whereas Spark allows
multiple stages linked in a Directed Acyclic Graph (DAG) for complex operations [64,9].
The DAG structure in Spark helps define the task execution sequence, optimizing paral-
lelism and resource allocation to improve performance [9,68].

2.2 Challenges of Resource Management

Resource management systems are critical to distributed big data analytics frameworks,
managing the efficient allocation of computational resources through tasks such as schedul-
ing, monitoring, logging, user authentication, and job status communication [33]. Systems
like YARN separate resource management from the programming model and delegate
scheduling duties to application-specific components [33,82].

A core aspect of resource management systems is accurately predicting resource de-
mand to balance performance and cost, which is particularly relevant for big data analytics
workloads. Both overprovisioning and underprovisioning resources can have adverse effects,
leading to unnecessary costs or performance drops, respectively [79,91]. However, accurate
prediction is complex due to the dynamic nature of workloads, which vary in resource
needs based on factors like job size, complexity, and data type [74,39].

Big data analytics frameworks, such as Apache Spark [99], offer extensive tuning op-
tions — over 150 configurable parameters including memory, CPU, and node count —
which makes optimizing performance challenging for users and administrators alike [21,1].
In addition, resource management systems often operate in heterogeneous environments,
where nodes differ in CPU, memory, and storage capabilities, further complicating resource
allocation and prediction [4,28]. Concurrent execution of jobs within the same cluster can
lead to resource contention, where jobs compete for shared resources, affecting individual
job performance and complicating the accurate prediction of resource needs [44,74]. Re-
source management systems must account for these interactions to minimize bottlenecks
and ensure optimal resource distribution.
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2.3 Performance Modeling Methodologies

In performance modeling for distributed big data analytics, approaches are typically cat-
egorized into simulations, analytical models, and machine learning.

Simulation-Based Prediction Models Simulation-based models are a common ap-
proach for predicting performance, using computational algorithms to emulate system
behavior [86,49,7,52]. These models aim to closely replicate the execution environment,
allowing researchers to estimate metrics such as execution time [7,52], resource usage, and
bottlenecks [92]. However, developing detailed simulators can be resource-intensive and
time-consuming [44]. Often, simulation-based models use profile runs, which gather per-
formance metrics by running representative workloads on the actual system. These metrics
include I/O overhead [86,92], CPU usage [49,52], and execution time, which help calibrate
the simulation model for accuracy. For instance, [86] utilizes profile runs with partial input
data to gather execution traces, using mathematical formulas to predict performance at
each execution stage. Although profile runs are valuable, they do have limitations; they
may not capture all aspects of system behavior under varied conditions, which can affect
simulation accuracy. Additionally, profile runs are time-intensive and can require substan-
tial computational resources.

Analytical Prediction Models Analytical models use system knowledge to create
mathematical frameworks linking adjustable parameters to performance outcomes, often
requiring minimal or no training [25]. They incorporate specific workload traits, such as
workflow structures or configurations, into performance models. For example, [33] uses a
precedence graph and a queuing network model to capture task dependencies and synchro-
nization constraints based on workload structure and configuration. Similarly, [31] applies
Fluid Petri Nets to simulate Spark application behavior, integrating Spark’s configuration
and data flow into a comprehensive performance model. However, these models face the
issue of “state space explosion”, where increasing variable complexity challenges the anal-
ysis. In Spark, multiple concurrent jobs, varying task types, and user priorities managed
by YARN create numerous states that a single model struggles with [44,74].

Machine Learning Prediction Models Machine learning models use statistical meth-
ods to create predictions from historical data, with accuracy largely depending on data
representativeness [25]. In distributed systems, these models are classified as white-box or
black-box, based on the use of workload characteristics [69]. White-box models incorporate
specific internal behaviors of the system, requiring access to source code, documentation,
and a deep understanding of the system components [42]. They offer high precision due
to their detailed insight into application and system operations, but are complex, time
consuming to build, and challenging to adapt to different systems [69]. Like analytical
models, white-box models require constant updating to reflect system changes, limiting
their flexibility. Conversely, black-box models approach the system as a black-box, using
observed input-output data to build predictions without needing internal system knowl-
edge. These models are simpler to develop, rely on empirical data from job executions,
and are more generalizable across different frameworks with minimal adjustment [42]. Yet,
the accuracy of such black-box models is highly dependent on data quality, which is why
insufficient or poor data can yield less reliable predictions [69].
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3 Research Methodology

The systematic review of the literature is the initial component of this research, aiming to
analyze the current state of workload characterization in distributed systems. We follow
a structured approach, ensuring both reproducibility and reliability. For our systematic
review of the literature, this involves clearly defining and documenting the methods used
to discover, select, analyze, and synthesize primary sources [29], which is why we take
inspiration from the framework developed in [16]. The systematic study selection was
carried out in the first quarter of 2024.

3.1 Definition of the Review Scope

As conveyed in the discussion of the related work, a plethora of workload characterization
techniques used in performance prediction models for distributed analytical workflows
exist. Our goal is to provide a structured overview of workload characterization in this
field, which then enables a more systematic approach when designing novel performance
models. This work aims to contribute to both academic research and practical applications.

3.2 Conceptualization of the Topic

We began by carefully crafting a keyword strategy, building it concept by concept, to
guide our systematic literature review. Initially, we identified the core concepts central to
our study, namely “performance prediction” and “distributed analytic job”, and expanded
them into a wider set of terms and synonyms. This expansion enabled us to capture various
facets of each concept. We then combined these terms using logical operators to link related
concepts and ensure comprehensive coverage. This approach was iterative; we continually
refined our search terms in response to new findings. We applied this evolving strategy
across multiple academic databases to ensure a broad and thorough exploration of the
existing literature. The selected keywords are:

(“dynamic adjustments” OR “dynamic scaling” OR “prediction model*” OR
“performance model*” OR “estimating runtime” OR “prediction execution time”)
AND (“distributed dataflow” OR “distributed analytics” OR “data analytics frame-
works” OR “scalable data analytics” OR “scalable data processing” OR “hadoop”
OR “spark” OR “flink”)

3.3 The Literature Search

To identify relevant literature, we employed a five-part search strategy: (1) identification;
(2) rough screening and evaluation of eligibility; (3) filtering for new ventures; (4) for-
ward and backward search; (5) inclusion. Our primary source for academic papers was the
”All Databases”1 collection on Web of Science. Web of Science is a respected database
within the academic community, known for its advanced search capabilities, comprehen-
sive indexing, and transparent search algorithm. This platform provides a vast collection
of peer-reviewed journals, conference proceedings, and scholarly articles across diverse
disciplines. Our choice of Web of Science over Google Scholar was informed by factors
highlighted in the paper “Which academic search systems are suitable for systematic re-
views or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26
other resources” [36]. While Google Scholar is known for its extensive database, it often

1 https://www.webofscience.com/wos/alldb/basic-search, Accessed: October 2024
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returns a large number of irrelevant results, making systematic searching both difficult and
time-consuming. Additionally, Google Scholar lacks consistent reproducibility of search re-
sults, an issue that cannot simply be attributed to database expansion. In contrast, Web
of Science ensures that identical searches yield consistent results over time.

We then carefully screened the titles and abstracts of each article to determine eligi-
bility, ensuring they met the following criteria:

1. Publication in Peer-Reviewed Journals:Only articles from peer-reviewed journals
and conferences were included to maintain academic credibility and research quality.

2. Language: All papers were required to be in English to ensure full comprehension
and accurate analysis.

3. Research Methodology: We prioritized studies using empirical research methods to
ensure concrete data and measurable results that can inform our investigation.

4. Open Source Platforms: We focused on studies involving open-source distributed
analytics platforms (e.g., Hadoop, Spark) to reflect industry trends and practices.

5. Non-Outdated Technology: Papers needed to use Hadoop 2 or newer, as Hadoop
1 is unsupported by most cloud providers, ensuring relevance for modern computing.

Papers that passed this stage were then subjected to a more detailed review. This
involved an in-depth assessment of each study’s full text, rigorously evaluating its relevance
and suitability for inclusion in our systematic review. Following the eligibility screening
process, we conducted a comprehensive forward and backward search with the 10 most-
cited papers. For this, we used an online tool2 designed to visualize the connections between
academic papers. This platform enabled us to thoroughly explore the citation network
associated with our selected studies. The forward and backward searches examined both
the references within the selected papers (backward search) and the papers that cited our
selected studies (forward search). This approach aimed to capture a wider range of related
research. By examining both citing and cited papers, we ensured we did not overlook
significant studies that may have indirect relevance to our primary selections, thereby
enhancing the depth and scope of our systematic review.

3.4 Literature Analysis and Synthesis

Determining the similarity of distributed workloads presents a significant challenge, re-
quiring an in-depth investigation of the various levels and parameters influencing these
workloads. In Section 4, we present the results of our exploratory analysis, where we ex-
tracted all workload-related input parameters of performance models from the systemati-
cally selected literature. We also provide a synthesis and overview of all identified workload
characteristics and propose a 5+1 layer classification model of workload characteristics to
enhance dataset quality and optimize performance prediction.

4 Analysis and Findings

In the following, we will analyze and synthesize all used performance prediction model
input variables related to workloads into a single synthesis. Finally, we will also present
other findings resulting from our research.

2 https://www.connectedpapers.com, Accessed: October 2024
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Fig. 2. 5+1 layer classification model.

4.1 5+1 Layer Classification Model

The 5+1 layer classification model (cf. Figure 2) encompasses six categories of workload
characteristics used in performance modeling for distributed processing jobs. These cate-
gories include characteristics related to cluster hardware, input data, the big data frame-
work, the submitted user application, and performance metrics. As illustrated in Figure 1,
we classify input parameters as either white-box or black-box based on whether they can
be observed without accessing the big data framework and application code. Some param-
eters may even be classified as gray-box, as they may or may not be framework-specific
depending on the model. Consequently, layers composed solely of black-box properties are
designated as black-box layers, those with only white-box properties are termed white-box
layers, and layers containing both types or gray-box parameters are called gray-box layers.
Figure 3 illustrates the six layers and their overall frequency in the researched articles.

Big Data Framework Layer The layer most commonly used is the Big Data Frame-
work Layer, which appears in 45 of the 62 performance models (cf. Figure 3). This layer
includes all characteristics (cf. Table 1) of the workload that reflect the internal behav-
ior of the processing platform. Since these characteristics are platform-specific, they are
classified as white-box parameters, making this a white-box layer. Modeling approaches
that use this layer predict performance by incorporating system behavior, often providing
deeper insights into the internal execution of a program and its resulting performance. This
approach bypasses the need for high-quality training datasets and avoids the significant
training overhead involved in collecting data for model construction [88,93]. However,
because all parameters are framework-specific, the insights derived from this layer are
challenging to apply across different frameworks. The frequent use of the Big Data Frame-
work Layer suggests an over-representation of framework-specific performance prediction
approaches in current research methodologies.

The most commonly used workload characteristic within this layer was the framework
configuration, featured in 17 performance models. Choosing the appropriate framework
configuration is challenging due to the vast number of parameters available. For example,
the Hadoop framework includes up to 190 configuration parameters, and overall perfor-
mance is highly sensitive to these settings [13]. Finding the optimal configuration for
Hadoop is application-specific, meaning that applying a default or universally optimized
configuration to various applications results in suboptimal performance. Manually tun-
ing these parameters without extensive knowledge of the Hadoop system and the specific
application is tedious and time-consuming, potentially leading to significant performance
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Table 1. Big Data Framework Parameters.

Count Parameter Category References

17 Framework Parameter Configuration white-box
[66,23,74,22,98,33,97,20,54,34,41,57,59]

[40,38,63,2]

12 Workflow Structure white-box [9,11,4,31,78,48,8,35,92,67,38]

9 Number of Tasks white-box [66,31,53,71,59,19,93,10]

5 Number of Slots white-box [9,31,50,73,63]

5 Running Tasks white-box [5,8,11,55]

4 Completed Tasks white-box [8,11,5]

4 Number of Job Stages white-box [19,9,33,93]

3 Available Resources white-box [80,78,5,2]

3 Number of Partitions white-box [73,7]

3 CPU Cores per Slot white-box [73,7]

2 Data Chunks Size white-box [66,48]

1 Parallelism Factor white-box [92]

1 Job Queue white-box [87]

1 Task Scheduler Delay white-box [11]

degradation [13]. Additionally, selecting a particular subset of configurations can introduce
selection bias, which may result in less accurate performance predictions.

The second most commonly used characteristic, applied in 11 performance prediction
models, was information about the workflow structure. Traditional performance mod-
eling systems for big data analytics have primarily focused on MapReduce-like frame-
works [33,50,87,46]. MapReduce operates through three distinct stages: map, shuffle, and
reduce. During the map stage, input data is processed into intermediate key-value pairs,
with each map task independently handling a subset of data, enabling high paralleliza-
tion. The shuffle stage then reorganizes these intermediate data pairs, sorting and grouping
values by key. In the reduce stage, the grouped data is processed to produce the final out-
put by aggregating intermediate values. This model simplifies large-scale data processing
on distributed systems, abstracting complexities in parallel and distributed computing,
which enables efficient execution of extensive data operations [24]. However, the MapRe-
duce paradigm only includes the map and reduce phases. Some researchers have leveraged
Spark’s Directed Acyclic Graph (DAG) to incorporate workflow structure into performance
models. Spark provides numerous data manipulation operators, such as groupByKey and
join, which utilize the DAG to define dependencies. Spark divides jobs into multiple stages,
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Table 2. Performance Parameters.

Count Parameter Category References

21
(Task) (Average or Total) Execution

gray-box
[9,11,7,74,84,97,34,92,67,59,52,60,10,55]

Time (for each Stage) [71,80,28,51,33,53,2]

6 (Task) CPU Utilization gray-box [49,78,96,70,74,100]

3 Task Memory Requirement white-box [86,87,1]

3 (Task) Startup and Cleanup Time gray-box [51,86,9]

3 (Task) I/O Write Cost gray-box [86,49,71]

3 (Task) I/O Read Cost gray-box [86,71]

2
Data Processing Ratio (Size Read Data /

Size Write Data)
white-box [92,59]

2 Processing Latency white-box [33,100]

2 Task Success Rate white-box [53,59]

1 Data Processing Rate (Size / Time) white-box [92]

1 Network Usage black-box [100]

1 Historical Number of Runs black-box [80]

1 Network Latency black-box [49]

1
Data Localization Ratio (locally stored

data)
white-box [92]

1
Number of Bytes Transferred During

Shuffles
white-box [67]

each scheduled in a distributed execution environment [101]. While each stage has distinct
resource requirements, these are not represented by the DAG [101], and the multitude of
stages introduces complexity to performance modeling [32].

Performance Layer The Performance Layer, the second most commonly used layer,
includes historical or real-time hardware usage data for distributed workflows. Most pa-
rameters in this layer, as listed in Table 2, can be accessed without direct interaction with
the big data framework. However, some performance models incorporate metrics at the
framework stage [71,80] or task level [9,51,53], which requires framework access. As a re-
sult, parameters from this layer are classified as white-box parameters when performance
tracking occurs at the task or stage level. Additionally, certain parameters, like data lo-
cality, are exclusively white-box, making this a gray-box layer. Utilizing the Performance
Layer simplifies the modeling process by allowing to focus on accessible, unbiased, and
precise low-level hardware usage details rather than higher-level abstraction layers.

According to the definition of performance prediction models, all workload character-
istics from other layers directly influence performance metrics and can be reflected in this
layer. However, the effectiveness of the Performance Layer depends on the completeness
and quality of the training dataset, and it introduces substantial training overhead due to
the data collection required for model construction [93]. While performance metrics can
assist in initial resource allocation for a target runtime, factors such as data locality and
failures can also impact the actual runtime [70]. Execution time for data processing jobs
is further affected by the application’s resource requirements. Following the classification
by [34] into four types of distributed applications – CPU- and I/O-intensive, memory-
intensive, and iterative-intensive applications – we identified four related categories of
performance metrics relevant to distributed batch analytics. However, note that resource
requirements may vary across different stages of the processing workflow [9,32].

CPU-Centric Apart from actual runtime, the most commonly used performance metric
in performance models is CPU utilization. According to [49], CPU demand in a Spark
system can be categorized into three types:
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1. Task Execution Time: This represents the CPU work required by the cluster to
process the task itself.

2. Coordination Overhead: This includes the CPU needed for coordination with the
driver program, task preparation before execution, and post-processing after execution.

3. Infrastructure Overhead: This refers to the CPU demand for infrastructure services
provided to a task, which is independent of data input and represents a static demand.

I/O-Centric In distributed analytics systems, I/O-centric resource requirements are criti-
cal because data is often distributed across multiple nodes. For many iterative data mining
and machine learning algorithms, network I/O overhead is a primary factor affecting sys-
tem performance [43]. I/O-centric applications depend heavily on efficient data read and
write operations, and performance can be significantly impacted by these I/O activities.
Nodes share data, and at times, a node may need to read data only available on another
node, which can negatively affect runtime performance [49]. I/O-centric applications can
be further classified into those that are read-heavy and those that are write-heavy. While
black-box parameters can directly measure I/O read and write speeds, some researchers
prefer white-box parameters, such as the data processing ratio and data localization ra-
tio [92,59]. These ratios indicate the proportion of data processed and stored locally, which
isn’t directly captured by simple read/write speed metrics. Understanding data localiza-
tion provides insights into how efficiently data is utilized and moved across the system,
directly impacting performance.

Communication-Centric Even if an application does not have additional I/O demands,
it may still require data computed on another node to update its own calculations [1].
Communication-centric applications depend on frequent, large data exchanges over the
network to transfer information between nodes. Limiting network capabilities can result
in longer execution times [96]. The network infrastructure of the cluster is the primary
factor impacting communication performance. In parallel computing, common commu-
nication patterns include one-to-one, one-to-all (broadcasting), all-to-all, and all-to-one
(reduction) [1]. Understanding these communication patterns and their impact on perfor-
mance is valuable for optimizing distributed analytical workflows.

Memory-Centric Memory management is crucial in distributed data-parallel workloads,
where efficient memory use can significantly affect performance and costs. Effective mem-
ory usage involves accurately predicting the necessary memory for processing to prevent
resource overuse or underuse. For instance, when a Spark cluster runs out of memory, the
efficiency of in-memory processing declines, as data must be reloaded from disk, negat-
ing Spark’s in-memory advantages [45,61]. Additionally, poor memory allocation — such
as frequent garbage collection — can cause job failures and longer processing times, re-
sulting in delays and inefficiencies that impact the overall performance of data-parallel
workloads [61]. Conversely, excessive memory allocation yields only marginal performance
improvements while wasting significant resources. In cloud environments, this leads to
higher costs without proportional gains in processing speed [61].

While the Performance Layer provides valuable metrics, it may lack the contextual
insights offered by other layers. For example, without the Big Data Framework Layer, it
can be challenging to determine why specific configurations result in certain performance
outcomes. Similarly, without the Hardware Layer, understanding the limitations imposed
by physical resources may be difficult.
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Table 3. Hardware Parameters.

Count Parameter Category References

16 Number of CPU Cores black-box [95,74,62,51,86,48,33,53,92,1,19,63]

12 Number of Nodes black-box [95,74,62,51,86,48,33,53,92,1,19,63]

8 Memory Size black-box [69,84,50,35,81,21,60,38]

6 Memory Size per Node black-box [95,96,62,51,53,73]

6 Number of CPU Cores per Node black-box [95,62,51,86,33,63]

3 Disk Write Speed black-box [6,96,63]

3 Disk Read Speed black-box [6,96,63]

3 CPU Processing Power black-box [6,53,63]

1 Number of Disks black-box [6]

1 RAM per Core black-box [6]

1 RAM Read Speed black-box [63]

1 RAM Write Speed black-box [63]

1 Type of Storage Medium black-box [53]

1 Number of Disks per Node black-box [33]

1 Network Bandwidth black-box [63]

Table 4. User Application Parameters.

Count Parameter Category References

8 Workload Type black-box [69,97,41,70,61,40]

4 Input Parameters black-box [84,48,35,81,70,100]

1
Application Type (I/O Intensive, CPU

Intensive, etc.)
black-box [74]

Hardware Layer The Hardware Layer is the third most commonly used layer, featured
in 30 performance models. This layer includes workload properties (cf. Table 3) that de-
scribe static details about the physical architecture and hardware configuration within the
computing cluster, providing a stable foundation for understanding the system’s capac-
ity and performance limits. Examples of parameters in this layer include the number of
compute nodes, CPU specifications, memory, and I/O capabilities. Unlike the Big Data
Framework Layer, the Hardware Layer consists entirely of black-box parameters, classify-
ing it as a black-box layer. Hardware information is relatively easy to obtain and does not
require invasive monitoring tools. Additionally, hardware parameters are generally static
and predictable, simplifying the modeling process. The architecture configuration and ca-
pabilities in this layer form the foundation upon which all other layers rely, influencing
reliability and performance optimization in distributed computing systems. This layer can
also reflect the heterogeneity of physical hardware within the computing cluster, as varia-
tions in hardware impact execution time [9]. The most frequently used parameters in this
layer are the number of CPU cores (used in 16 models), followed by the number of nodes
(used in 12 models), and memory size (used in 8 models).

However, these parameters alone do not offer insights into the effectiveness or efficiency
of hardware usage for specific tasks, which is crucial for accurate performance modeling.
As a result, the Hardware Layer needs to be combined with another layer that reflects
actual hardware usage. All 30 performance models incorporated this layer with at least
one other layer, most frequently with the Performance Layer.

User Application Layer The User Application Layer includes static characteristics of
applications running within the distributed environment. This layer, used in 12 of the 62
performance models, is classified as a black-box layer due to the nature of its parame-
ters. These parameters (cf. Table 4) typically relate to the application’s computational
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Table 5. Data Parameters.

Count Parameter Category References

26 Data Input Size black-box
[66,95,98,84,92,59,38,93,23,74,11,69,20,81]

[73,21,63,7,62,51,60,28,70,67,19]

1 Data Output Size white-box [28]

1
Input Data Profiles (Size, Number of files,

number of entries)
white-box [35]

requirements, such as the type of workload (represented by the workload name [69] or
a hash [81]), input parameters, and the category of the application (e.g., I/O-intensive,
iterative-intensive, CPU-intensive, and memory-intensive). Additionally, the User Applica-
tion Layer enhances the generalization of performance models. By capturing a diverse set
of applications, models can be refined to provide accurate predictions across a wider range
of scenarios, improving robustness and applicability. This layer also helps identify and mit-
igate application-specific hardware bottlenecks. For instance, an I/O-intensive application
may require different hardware resources compared to a CPU-bound application.

Data Layer The Data Layer contains information (cf. Table 5) about the data processed
by user applications. Although this layer could theoretically include various data char-
acteristics that impact performance, such as skewness and completeness [92], almost all
studies have focused primarily on data size. Some studies also consider data properties
at each stage, recognizing that many iterative algorithms only need to process data that
has changed since the last iteration [80]. Only one study [35] extended this to include
details, such as the number of records and files at the stage level. A possible reason for the
limited analysis of input data characteristics before job execution is the overhead involved
in handling large datasets. This layer is classified as a gray-box layer, as the input data
size can be observed at the workflow, stage, or task level.

Virtualization Layer The Virtualization Layer, though the least frequently used layer
with only 8 occurrences, offers several key insights. The parameters in this layer, listed
in Table 6, often relate to the isolation, efficiency and overhead of resources introduced by
virtualization. This layer is essential due to the prevalent use of Java in major big data
frameworks and the growing reliance on virtualization technologies and cloud comput-
ing [37]. Including this layer helps identify inefficiencies and optimize the performance of
virtualized resources, promoting effective utilization of virtual machines and containers. As
many big data frameworks are Java-based, some research has incorporated white-box Java
Virtual Machine (JVM) characteristics into performance models. These JVM parameters
include garbage collection time and Java serialization/deserialization time [52,70,92,93].
Additionally, the JVM provides performance metrics, such as CPU utilization, which are
critical for understanding the performance implications of running big data applications
in a virtualized Java environment [48].

Additionally, some clusters use kernel-level or system-level virtualization, employing
technologies like containers or virtual machines (VMs) [6] for efficient resource utilization.
Virtualized environments introduce additional configuration layers that can affect perfor-
mance, adding complexity to performance modeling. In multi-tenant environments, neigh-
boring containers or VMs can interfere with each other, leading to unpredictable perfor-
mance variations due to resource contention [58,96]. Incorporating the Virtualization Layer
allows models to account for factors like virtual machine configuration or resource sharing
among virtual instances, resulting in more accurate predictions in virtualization-heavy en-
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Table 6. Virtualization Parameters.

Count Parameter Category References

3 Number of Cloud Instances black-box [6,22,93]

2 Price per Hour black-box [6,93]

2 Cloud Machine Type black-box [22,93]

1 Resource Interference white-box [96]

1 Docker Configuration white-box [96]

1 Data (De)Serialization Time white-box [92]

1 Garbage Collection Time white-box [92]

vironments. Cloud providers offer various computing resources with differing capabilities
and pricing models. Some researchers have incorporated cloud-specific information into
performance models to evaluate cost-performance trade-offs and optimize resource alloca-
tion for specific workloads [6,93]. Cloud-specific parameters can include instance pricing,
resource types, and network bandwidth. An advantage of cloud resources is the ability
to easily reproduce environments using the same machines, frameworks, and open-source
applications, enabling the creation of shared training data repositories [79].

The relatively low frequency of the Virtualization Layer suggests it is an emerging
area in performance modeling. As virtualized environments become more common in dis-
tributed systems, the inclusion of this layer is likely to increase, reflecting its growing
importance in accurately capturing performance dynamics in cloud-based and virtualized
settings. With the continued expansion [12] of cloud computing, incorporating the Vir-
tualization Layer becomes increasingly relevant. This layer enables performance models
to align better with modern cloud infrastructures, where virtual machines and containers
are ubiquitous [37]. In summary, the Virtualization Layer is considered a gray-box layer;
however, we believe it contains more non-observable than observable properties. Static
cloud properties, such as hardware configuration and pricing, are easy to obtain but are
more closely related to the hardware level than to virtualization itself. In contrast, VM
information, JVM configurations, and detailed virtualization settings may not be directly
visible in a managed cluster.

4.2 Analysis of Layer Combinations

Next, we explore the use of the six layers both individually and in combination. Table 7
presents the seven most frequently used layer combinations for performance prediction.

Table 7. Commonly Used Layer Combinations.

Combination Count

Big Data Framework Layer, Performance Layer 10

Big Data Framework Layer 7

Big Data Framework Layer, Data Layer, Hardware Layer 5

Big Data Framework Layer, Hardware Layer, Performance Layer 4

Data Layer, Hardware Layer 3

Big Data Framework Layer, Data Layer 3

Big Data Framework Layer, Data Layer, Hardware Layer, Performance Layer 3

Hardware Layer, Performance Layer 2

Data Layer, Hardware Layer, Performance Layer 2

Big Data Framework Layer, User Application Layer 2

Data Layer, Hardware Layer, User Application Layer 2

Big Data Framework Layer, Data Layer, Hardware Layer, User Application Layer 2
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The most commonly used combination is the Big Data Framework Layer and the
Performance Layer, highlighting their effectiveness in capturing the complex factors in-
fluencing analytical workflow performance. Notably, these are the only two layers used as
standalone layers; all others are used in combination with at least one more layer. However,
comparing their standalone usage to their use in combination with other layers (cf. Ta-
ble 8) suggests that understanding either the internal workings of big data frameworks
or performance metrics alone is insufficient. Effective performance modeling may require
contextualizing these layers with characteristics from other layers to create robust models.

The Data Layer is frequently used in pairing combinations, as different applications of-
ten vary in data characteristics and requirements, and data size is relatively easy to obtain.
The increasing use of the Data Layer (cf. Figure 4) suggests that it complements all layers,
including the widely used Big Data Framework Layer, to improve prediction accuracy. This
indicates that data characteristics are crucial for enhancing the accuracy and reliability of
performance models. The most common black-box combination in performance prediction
models includes the Data Layer, the Hardware Layer, and the Performance Layer. This
combination emphasizes the importance of both static and dynamic information about
physical resources and data size. Its frequent use in black-box modeling implies that cap-
turing a holistic view of the system’s operating environment is essential for accurate per-
formance predictions. Static hardware configurations provide foundational capacity, while
dynamic performance metrics and data characteristics offer insights into real-time usage
and processing demands. In particular, the Virtualization Layer and the User Application
Layer are absent among the twelve most popular layer combinations. This absence high-
lights key considerations for performance modeling in distributed analytical workflows.
The underrepresentation of the Virtualization Layer suggests that virtualization is still
an emerging area in performance modeling for big data analytics. As virtualized environ-
ments become more common [12], future models are expected to increasingly incorporate
this layer to capture the nuances of VMs and containerization. Similarly, the underrep-
resentation of the User Application Layer implies that the unique behaviors of different
applications may not be fully represented in most performance models — a hypothesis
worth further investigation.

In general, the variety of common layer combinations in performance models under-
scores the inherent complexity of creating effective predictive models for distributed an-
alytical workflows. This complexity suggests that simple, single-layer models are insuffi-
cient to capture the multifaceted nature of these workflows. Achieving accurate predictions
may require the combination of multiple layers, which involves advanced modeling tech-
niques and a deep understanding of how different factors interact. This need reinforces
the value of the 5+1 layer classification model in developing comprehensive and accurate
performance models. Incorporating multiple layers helps mitigate potential biases in per-
formance models. For example, relying solely on the Big Data Framework Layer could
introduce biases tied to specific configurations. When combined with the Hardware and
Performance Layers, models can balance these biases with broader system-level insights,
leading to more reliable and generalizable predictions. This layered approach enables a
nuanced understanding of the factors influencing distributed job performance, supporting

Table 8. Standalone and Combined Usage of Layers.

Layer Standalone Usage Combined Usage

Big Data Framework Layer 6 37

Performance Layer 1 32
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the development of more accurate and adaptable models. Although adding layers can im-
prove model accuracy, it also increases complexity. Future efforts should aim to balance
complexity with simplicity to ensure that models remain practical and usable while still
offering detailed insights into performance drivers. By including underrepresented layers,
performance models can become more comprehensive, broadening their applicability to
various environments and applications. This approach not only improves prediction accu-
racy, but also improves the robustness and versatility of models in diverse settings.

4.3 Evolution of Layer Usage

The evolution of layer usage in performance models reveals shifts in the focus and method-
ologies for predicting performance in distributed analytical workflows, as illustrated and
summarized in Figure 4. Although the Big Data Framework Layer remains consistently
present throughout most years, underscoring its foundational role in performance model-
ing, its proportional usage is decreasing. This declining reliance on the Big Data Framework
Layer indicates a growing preference for black-box models, which offer greater adaptability
and reduced dependency on specific frameworks. This shift underscores the need for more
generalizable and less intrusive approaches to performance prediction.

Additionally, there is an increasing trend to include the Data Layer, reinforcing the
idea that data size is a critical factor in improving performance prediction. The increasing
prominence of the Data Layer highlights the essential role data characteristics play in
influencing performance. As the volume and variety of data in distributed systems grow,
incorporating detailed, data-specific parameters has become vital for enhancing model ac-
curacy. Furthermore, researchers are beginning to incorporate virtualization-related prop-
erties, reflecting the growing importance of virtualized environments in modern distributed
systems. This emerging focus on virtualization indicates the need to capture the nuances
introduced by these environments. As virtualized systems become more prevalent, ac-
counting for resource allocation efficiency and isolation challenges is crucial for accurate
performance modeling. Including the Virtualization Layer may be essential for develop-
ing comprehensive models that reflect the realities of modern distributed systems. The
increasing attention to the User Application Layer also suggests a trend toward more
application-specific performance models. Understanding the unique behaviors and require-
ments of various applications is key to creating precise and robust predictions, enabling
performance models to adapt to a wider range of scenarios. In summary, the evolving
use of layers in performance models reveals a continuous effort to balance complexity
with accuracy and generalization. By integrating diverse layers and addressing emerging
trends, future performance models can become more comprehensive, robust, and versatile,
enhancing the utility of distributed analytical workflows.

4.4 Future Research Directions

The exploratory analysis and synthesis of workload characteristics in distributed processing
environments have revealed significant insights and introduced a 5+1 layer classification
model to inform performance prediction. However, there are several promising directions
for future research to build upon these findings.

Firstly, deeper utilization of the Data Layer presents a potential research avenue. Al-
though the current focus is mainly on data size, exploring other data characteristics —
such as skewness, distribution, and quality — could provide more nuanced performance
predictions. Developing methods to capture and utilize these characteristics efficiently,
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without excessive overhead, would further improve model accuracy. As virtualization con-
tinues to grow in prevalence [12], future research should also focus on modeling virtualized
environments in more detail, including VM configurations, container orchestration, and
their impacts on performance. Understanding the interaction between physical and virtual
resources will be essential for accurate performance predictions. In addition, incorporat-
ing cloud-specific characteristics — such as instance types, pricing models, and resource
allocation policies — into performance models could optimize cost-performance trade-offs
in cloud-based distributed systems. Application-specific performance modeling is another
area ripe for exploration. Expanding the models to cover a broader range of applica-
tions and workload types, especially those not commonly represented, will improve the
generalization and robustness of the predictions. Developing adaptive models that can
dynamically adjust to changing workload patterns and application requirements would
enhance efficiency and accuracy of performance prediction. Finally, examining the interac-
tions and dependencies between layers in the 5+1 layer classification model could provide
a deeper understanding of how various factors collectively influence performance. This
includes studying synergies between layers such as hardware, data, and application. Cre-
ating composite metrics that capture the combined effects of multiple layers could offer a
more holistic view of system performance and help identify optimization opportunities.

5 Threats to Validity

In this study, several potential threats to validity should be considered, particularly in
relation to the literature search process and the scope of the review. Despite a compre-
hensive and systematic search strategy designed to cover key sources and fields relevant
to performance modeling for distributed analytic computing, it is possible that some rele-
vant studies were inadvertently overlooked. The literature search was conducted primarily
using the Web of Science database, which, while extensive, may not include all studies in
this rapidly evolving area or may not contain certain studies at the time of use. Further-
more, limitations in keyword selection or scope definition may have further influenced the
coverage of the relevant literature.

The reading and classification of workload characteristics were undertaken with careful
attention to detail and consistency, guided by established methodologies and our best un-
derstanding of the field. Each paper was thoroughly reviewed and the identified parameters
were cross-checked and categorized according to the newly developed 5+1 layer classifica-
tion model. However, there remains an inherent risk of misinterpretation or misclassifica-
tion of parameters due to subjective judgments and potential ambiguities in the articles
themselves. Although every effort was made to minimize these risks, it is important to
acknowledge that these classifications, despite being systematic and well-considered, may
still contain inaccuracies or biases.

6 Conclusion

This study investigated workload characterization in distributed processing environments,
proposing a 5+1 layer classification model to inform performance prediction models.
Through a systematic review of the literature, we identified six critical layers used in
performance models: Big Data Framework, Performance, Hardware, Data, User Applica-
tion, and Virtualization Layers. The findings highlight the foundational roles of the Big
Data Framework and Performance Layers, though predictive accuracy benefits from com-
bining them with other layers, especially the Data Layer, which underscores the impact
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of data characteristics such as size and distribution. The Hardware Layer provides essen-
tial insights into physical limitations, while the emerging Virtualization Layer reflects the
need to model virtualized environments, which are increasingly prevalent in distributed
systems, especially in light of cloud computing.

Based on our findings, future work should expand the characteristics of the data and
virtualization properties to further refine the accuracy of the model and address the com-
plexity of cloud-based environments. Another consideration is the increased focus on a
black-box perspective when designing performance modeling techniques to foster reusabil-
ity. This layered approach underscores the need for adaptable and accurate models that
robustly capture the multifaceted nature of modern distributed systems.

References

1. Ahmed, N., Barczak, A.L.C., Rashid, M.A., Susnjak, T.: An enhanced parallelisation model for
performance prediction of apache spark on a multinode hadoop cluster. Big Data Cogn. Comput.
5(4), 65 (2021)

2. Ahmed, N., Barczak, A.L.C., Rashid, M.A., Susnjak, T.: A parallelization model for performance
characterization of spark big data jobs on hadoop clusters. J. Big Data 8(1), 107 (2021)

3. Ahmet, A., Abdullah, T.: Real-time social media analytics with deep transformer language models:
A big data approach. In: BigDataSE. IEEE (2020)

4. Aliabadi, S.K., Ardagna, D., Entezari-Maleki, R., Gianniti, E., Movaghar, A.: Analytical composite
performance models for big data applications. J. Netw. Comput. Appl. 142, 63–75 (2019)

5. Aliabadi, S.K., Aseman-Manzar, M., Entezari-Maleki, R., Ardagna, D., Egger, B., Movaghar, A.:
Fixed-point iteration approach to spark scalable performance modeling and evaluation. IEEE Trans.
Cloud Comput. 11(1), 897–910 (2023)

6. Alipourfard, O., Liu, H.H., Chen, J., Venkataraman, S., Yu, M., Zhang, M.: Cherrypick: Adaptively
unearthing the best cloud configurations for big data analytics. In: NSDI. USENIX (2017)

7. Amannejad, Y., Shah, S., Krishnamurthy, D., Wang, M.: Fast and lightweight execution time predic-
tions for spark applications. In: CLOUD. IEEE (2019)

8. Ardagna, D., Barbierato, E., Evangelinou, A., Gianniti, E., Gribaudo, M., Pinto, T.B.M., Guimarães,
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