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ABSTRACT 
 
This study evaluates the performance of the Stable Distribution Naive Bayes Classifier on 

the well-known IRIS dataset, comparing it against the traditional Naive Bayes Classifier. 

The Stable Distribution Classifier, well-suited for data with heavy tails and skewness, 

consistently achieves superior accuracy, especially when handling outliers and non-

standard samples. This study conducted 18 feature combinations of Iris Versicolor and Iris 

Virginica across varying parameter configurations (𝛼, 𝛼), demonstrating the stable model’s 

robustness under constrained sample sizes. A significant technical contribution involves 

integrating R’s specialized stable package into Python, enabling the direct application of 

professional fitting and PDF functions for precise analysis. Representative results from key 

feature combinations further illustrate its practical advantages. Additionally, five 
additional datasets—Wine, Social Network Ads, Diabetes, Electrical Grid Stability 

Simulated, and Vehicle Silhouettes—further demonstrate the Stable Distribution 

Classifier’s broad applicability across diverse domains. This research further confirms that 

the Stable Distribution Naive Bayes Classifier is a robust and accessible alternative, 

offering enhanced predictive performance over models traditionally based on Gaussian 

distribution assumptions. 
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1. INTRODUCTION 
 

The Naive Bayes Classifier is a widely used probabilistic classification method due to its 
computational efficiency and strong performance in high-dimensional settings [1, 2]. It is capable 

of handling both continuous and categorical data and remains a fundamental approach in machine 

learning. However, a key limitation of traditional Naive Bayes classifiers is the assumption of 
feature independence, which is often unrealistic in real-world applications. When features exhibit 

strong correlations, classification performance may degrade significantly [3]. 

 

In addition to the independence assumption, traditional Gaussian Naive Bayes classifiers often 
assume that continuous features follow a normal distribution. This assumption is restrictive, as 

real-world data frequently displays skewness, heavy tails, or multimodal distributions, deviating 

significantly from the Gaussian model. Normal distributions are symmetric and have thin tails, 
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while many practical datasets exhibit long-range dependencies and extreme values that cannot be 
effectively modeled under this assumption. 

 

To address these limitations, researchers have proposed alternative probabilistic models that relax 

the Gaussian assumption. One promising approach is the Stable Distribution-Based Naive Bayes 
Classifier, which replaces the normal distribution with the stable distribution—a more general 

class of probability distributions that allows for skewness and heavy tails. Theoretical foundations 

of stable distributions have been extensively studied in probability theory [4], and their practical 
applications have been explored in fields such as finance, signal processing, and machine learning 

[5]. Unlike traditional Gaussian-based methods, the Stable Distribution Naive Bayes model is 

better suited for real-world datasets exhibiting heavy tails and extreme values. 
 

Our study makes the following key contributions: 

 

1. Customization of the Naive Bayes Classifier: We extend the Naive Bayes framework by 

incorporating 𝛼-stable distributions, allowing it to handle heavy-tailed and skewed data that 

the traditional Gaussian Naive Bayes struggles with. 

2. Integration of Statistical Tools: By integrating R’s specialized stable distribution 

functions into Python’s machine learning framework, we enable efficient generation, 
fitting, and probability density estimation for stable distributions, improving computational 

accuracy and flexibility. 

3. Improved Accuracy for Heavy-Tailed and Skewed Data: The Stable Naive Bayes 
Classifier consistently outperforms the Gaussian model, particularly when 𝛼 is less than 2, 

demonstrating its robustness in modeling non-Gaussian data distributions. 

4. Practical Applications: Beyond the IRIS dataset, we validate the model’s effectiveness on 

five additional real-world datasets, confirming its superior adaptability and classification 
performance across diverse domains. 

 

2. STABLE DISTRIBUTIONS 
 

Stable distributions are a highly versatile family of probability distributions, widely used for 
modeling complex real-world phenomena, particularly in finance and physics. These distributions 

are characterized by four key parameters: alpha (𝛼) determines tail behavior, beta (𝛽) controls 

skewness, gamma (𝛾) represents scale, and delta (𝛿) defines location. This flexibility allows 

stable distributions to effectively capture heavy tailed and asymmetric data patterns, making them 
a powerful tool in probabilistic modeling. 

 

 
 
Examining the six plots in Figure 1, we can explore the distinctive characteristics of stable 

distributions in greater detail. 

 

1. Alpha (𝛼) Parameter: Alpha determines the ”tail heaviness” of the distribution. When 𝛼 

decreases, the distribution exhibits heavier tails, indicating a greater likelihood of 

extreme values deviating significantly from the mean. This is crucial for modeling 
financial returns that can have heavy tails, unlike the normal distribution that 

underestimates the probabilities of extreme events. 

2. Beta (𝛽) Parameter: Beta controls the skewness of the distribution. A 𝛽 value of 0 results 

in a symmetric distribution, whereas positive 𝛽 values create right-skewness, and 

negative 𝛽 values lead to left-skewness. In the context of the plots, the first and fourth 
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plots show how varying 𝛼 affects symmetric distributions (𝛽=0), indicating that as 𝛼 
decreases, the distribution flattens and the tails become heavier. 

3. Gamma (𝛾) and Delta (𝛿) Parameters: While gamma (often represented as c for scale) 

and delta (𝜇 for location) are not the focus of these plots, they are nonetheless important. 

Gamma stretches or shrinks the distribution, affecting the dispersion of data points, while 
delta shifts it left or right along the x-axis. For our plots, gamma (c) is set to 1, indicating 

a standard scale, and delta (𝜇) is set to 0, placing the center of the distribution at the 

origin. 
 

 
 

Figure 1. Probability density function and Cumulative distribution function, adapted from [6]. 

 

Now, the second and fifth plots show the effect of positive 𝛽 values with a fixed 𝛼 of 0.5, 

illustrating rightskewed distributions. The more positive the 𝛽, the more pronounced the skew to 

the right. This skewness can model data that has a tendency to produce values significantly larger 
than the mode more frequently than significantly smaller ones. 

 

Conversely, the third and sixth plots showcase negative 𝛽 values with a fixed 𝛼 of 0.5, 

demonstrating leftskewed distributions. In this case, negative 𝛽 values produce an extended left 
tail, making them suitable for modeling data where extreme negative values occur more 

frequently. 

 
Therefore, stable distributions, with their flexibility to model skew and heavy tails, are incredibly 

useful. They enable us to capture the characteristics of real-world data that are not well described 

by the normal distribution, particularly in fields where outliers and extreme values are common. 

 

3. WHY DATASETS CONFORM TO STABLE DISTRIBUTIONS? 
 

3.1. Iris Dataset 
 

In Figure 2, Iris-versicolor (red) and Iris-virginica (green) exhibit significant distribution overlap, 

particularly in sepal length and sepal width, making class separation more challenging. 

Additionally, both classes display fat tails and skewness, especially in petal length and petal 
width, where the distributions extend further on one side, indicating non-Gaussian characteristics. 
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Figure 2. Histograms of 4 features in IRIS Dataset 

 

The probability formulation of the Naive Bayes classifier is derived based on the conditional 
independence assumption [7]. We can now apply this approach to specific features, such as sepal 

width and petal length, to estimate the most likely class for a given observation. 

 

In classification, the term 𝑃(x) acts as a normalization constant and does not influence class 

comparisons. As a result, the classification decision is based on evaluating 𝑃(x | 𝐶𝑘) ・ 𝑃(𝐶𝑘). 

Given that the prior probabilities 𝑃(𝐶𝑘) are equal across classes, the final decision is primarily 

determined by the likelihood values 𝑃(x | 𝐶𝑘). 

 

 
 

Figure 3. Stable Distribution Naive Bayes classifier vs. Normal Distribution Naive Bayes classifier on 

Sepal Width (Blue and purple distribution overlapped) 
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Figure 4. Stable Distribution Naive Bayes classifier vs Normal Distribution Naive Bayes classifier on Petal 
Length (Blue and purple distribution overlapped) 

 

For SepalWidth = 2.75, under the Normal Distribution Naive Bayes classifier, the PDF value for 

Versicolor (point N1) is larger than that for Virginica (point N2), meaning 𝑃(x | 𝐶1) is greater 

than 𝑃(x | 𝐶2). Thus, the Naive Bayes classifier is more inclined to classify the data point as 

Versicolor. This is illustrated in Figure 3. 

 
In contrast, under the Stable Distribution Naive Bayes assumption, the PDF value for Versicolor 

(point S1) is smaller than that for Virginica (point S2), meaning 𝑃(x | 𝐶1) is less than 𝑃(x | 𝐶2). 

As a result, the 

 
Stable Distribution Naive Bayes classifier tends to classify the data point as Virginica. 

 

For Petal Length = 4.9, under the Normal Distribution Naive Bayes classifier, the PDF value for 

Versicolor (point N1) is the same as that for Virginica (point N2), meaning 𝑃(x | 𝐶1) is equal to 

𝑃(x | 𝐶2). Thus the Normal Distribution Naive Bayes classifier shows equal confidence in 

classifying the data point as either Versicolor or Virginica. This is illustrated in Figure 4. 

 
In contrast, under the Stable Distribution Naive Bayes assumption, the PDF value for Versicolor 

(point S1) is smaller than that for Virginica (point S2), meaning 𝑃(x | 𝐶1) is less than 𝑃(x | 𝐶2). 

This suggests that, according to the stable distribution model, a petal length of 4.9 is more likely 
to belong to the Virginica. 

 

3.2. Other Datasets 
 

 
 

Figure 5. Social Network Ads Dataset 
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Figure 6. Diabetes Dataset 

 

 
 

Figure 7. Electrical Grid Stability Simulated Data 
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Figure 8. Wine Dataset 
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Figure 9. Vehicle Silhouettes Dataset 

 

The datasets exhibit substantial overlap between class distributions, making simple probabilistic 
separation challenging. This suggests that Naive Bayes classifiers relying on Gaussian 

assumptions may perform poorly, and Stable Distribution Naive Bayes could be beneficial in 

improving classification accuracy. 

 

4. METHODOLOGY 
 

4.1. Iris Dataset Generation and Modeling 
 
To evaluate the Stable Distribution Naive Bayes Classifier on non-normal data, a synthetic 

dataset was generated using stable distributions. This process ensures that the modeled data 

retains the statistical characteristics of the original Iris dataset while introducing heavy-tailed and 

skewed properties commonly observed in real-world datasets. 
 

Taking the generation of Sepal Width as an example, to maintain the overlap between classes 

while adhering to the characteristics of stable distributions, we referenced the statistical properties 
of Sepal Width from the original dataset. Specifically, the mean and variance for Iris-versicolor 

were 5.94 and 0.516, respectively, while those for Iris-virginica were 6.59 and 0.636. These 

statistics were used to determine the delta (mean) and gamma (scale, calculated as the square root 
of 2 times the variance) for the generated dataset. Based on these parameters, we derive the 

following distributions. 
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• Distribution 1: (𝛼, 𝛽, 𝛾 = 0.73, 𝛿 = 5.94) 

• Distribution 2: (𝛼, 𝛽, 𝛾 = 0.90, 𝛿 = 6.59) 

 

This ensures that the generated data accurately reflects the distinct characteristics of the two 
classes. 

 

To create a balanced dataset, 50 data points were generated for each class (Iris-versicolor and Iris-
virginica), and the two datasets were concatenated. The data were then randomly shuffled to 

ensure independence and eliminate potential bias. Finally, the corresponding class labels (0 for 

Iris-versicolor and 1 for Iris-virginica) were added to form the final training data set. 
 

The decision to use a sample size of 50 data points per class was based on extensive testing with 

varying sample sizes. We evaluated accuracy across sample sizes of 200, 400, 800, and 1000 in a 

total of 288 experiments. The results demonstrated that, while larger sample sizes improved 
overall accuracy for stable distribution models, they also increased the performance gap between 

stable and Gaussian-based models. 

 
The MATLAB stblrnd function was specifically chosen for its ability to accurately simulate 

stable distributions while remaining independent of Python and R. This independence ensures that 

the data generation process is not influenced by the tools used for subsequent analysis, thus 
avoiding any potential dependencies. By separating data generation from model training, we 

effectively ensured the integrity and objectivity of the experimental results. 
 

4.2. Other Dataset Preparation 
 

Wine Dataset[12] contains 13 chemical attributes for classifying three types of wine (3 classes). 

Social Network Ads Dataset[13] contains features such as age and gender to classify whether a 
user has made a purchase (binary classification). 

 

Diabetes Dataset[14] comprises 8 health indicators to predict whether a person has diabetes (2 

classes). 
Electrical Grid Stability Simulated Dataset[15] provides 12 features to predict whether the power 

grid is stable (2 classes). 

 
Vehicle Silhouettes Dataset[16] has 18 features for classifying four types of vehicles (4 classes). 

 

4.3. Model Implementation 
 

The Stable Distribution Naive Bayes Naive Bayes Classifier is also as user-friendly and 

accessible as the Normal Distribution Naive Bayes Classifier. It integrates seamlessly into 
analytical workflows, providing a familiar interface for those accustomed to traditional statistical 

models. It is easy to use. 

 
In terms of availability, many statistical and machine learning packages across various 

programming languages have implemented the Stable Distribution Naive Bayes Classifier. For 

example: In Python, we can use the ”scipy.stats“ module which provides a variety of 

distributions, including stable distributions, that can be leveraged to implement a Stable Naive 
Bayes Classifier. Packages like ”scikit-learn“ offer a framework for creating custom classifiers, 

which can be extended to use stable distributions. 
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In the realm of R, we have a wealth of packages at your disposal for implementing Stable 
Distribution Naive Bayes Classifiers, each adept in handling the intricacies of stable distributions. 

The ”fBasics“ and ”stabledist“ packages offer comprehensive tools for calculating probabilities, 

and densities, and for simulating data. For more advanced statistical modeling and fitting, 

”StableEstim“ and stable provide robust methods for parameter estimation and inference. We use 
STABLE 5.3 toolkit developed by Robust Analysis, Inc. This toolkit is designed for handling 

stable distributions, making it ideal for analyzing heavy-tailed or skewed data, especially in 

finance. It provides functions to calculate densities, and distribution functions, and to simulate 
and fit data to stable distributions. This allows for a robust analysis of datasets that do not 

conform to the normal distribution, making it a valuable tool in statistical modeling and inference. 

Whether you’re estimating parameters with ”stablefit“, generating random samples with 
”rstable“, or checking the fit of your model with diagnostic functions, the stable package equips 

you with everything you need to harness the power of stable distributions in R. 

 

Please see details in the appendix. 
 

5. IRIS DATASET RESULTS 
 

This study compares the accuracy of two classifiers in predicting class membership based on four 
distinct features. 

 
Table 1. Comparative Accuracy of Generated Dataset using Different Values of  𝛼  and  𝛽  for four features 

 

Sepal Length & Sepal Width & Petal Width & Petal Length 

Generated 

Alpha 
Accuracy (𝛼= 0.5) Accuracy (𝛼= 0) Accuracy (𝛼= -0.5) 

Stable Normal Stable Normal Stable Normal 

1.5 0.73 0.43 0.87 0.76 0.73 0.73 

1.6 0.80 0.70 0.80 0.77 0.83 0.70 

1.7 0.83 0.60 0.83 0.80 0.75 0.70 

1.8 0.67 0.70 0.83 0.80 0.78 0.73 

1.9 0.93 0.93 0.83 0.80 0.85 0.85 

2.0 0.87 0.87 0.73 0.73 0.85 0.85 

 

In Table 1, four features are selected for predicting classifications at different locations where 𝛽  
is separately set to 0.5, 0, and -0.5.The overall performance of Stable Distribution Naive Bayes 

Classifier is better than the Normal Distribution Naive Bayes Classifier given different alpha 

values. 
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Figure 10. 𝛽 = 0 (Symmetric) 

 

In Figure 10, while 𝛽 = 0, both algorithms are performing well with overall accuracy over 70% 

but there is a clear performance difference between Stable Distribution Naive Bayes Classifier 
and Normal Distribution Naive Bayes Classifier. 

 

From the experimental results, the accuracy of classification for Stable Distribution Naive Bayes 
Classifier at different 𝛼  is greater than or equal to those of Normal Distribution Naive Bayes 

Classifier. Furthermore, where 𝛼  is between 1.6 and 1.9, the accuracy of the Stable Distribution 

Naive Bayes Classifier is 3% higher than the Normal Distribution Naive Bayes Classifier. A 

maximum difference of 11% occurs when 𝛼 =1.5, where accuracy of classification for Stable 
Distribution Naive Bayes Classifier is 87%, comparing to 76% for the Normal Distribution Naive 

Bayes Classifier. 

 

 
 

Figure 11. 𝛽 = 0.5 (Right Skew) 

 

In Figure 11, while 𝛽 = 0.5, the overall performance fluctuates, especially for Normal 
Distribution Naive Bayes Classifier accuracy ranges from 43% to 93% based on different alpha 

values used. At the same time, Stable Distribution Naive Bayes Classifier turns to be more stable 

in classification in range from 67% to 93% while maintaining a high level of accuracy. 
 

Only exception happens when 𝛼 =1.8, where the accuracy of the Stable Distribution Naive Bayes 

Classifier is 67%, which is slightly lower than the 70%, accuracy of Normal Distribution Naive 

Bayes Classifier, with 3% difference, the overall performance of Stable Distribution Naive Bayes 

Classifier is much better. The maximum difference of 30% occurs at 𝛼 =1.5, where the 

classification accuracy for Stable Distribution Naive Bayes Classifier is 73%, compared to 43% 

for Normal Distribution Naive Bayes Classifier. 
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Figure 12. 𝛽 = -0.5 (Left Skew) 

 
In Figure 12, while  𝛽 = −0.5, both algorithms are performing well with overall accuracy over 

70%. From figure we can still see the leading performance in Stable Distribution Naive Bayes 

Classifier. Accuracy of classification for Stable Distribution Naive Bayes Classifier at different 

𝛼is greater than or equal to those of Normal Distribution Naive Bayes Classifier. A maximum 

difference of 13% occurs when 𝛼 =1.6, giving Stable Distribution Naive Bayes Classifier 

accuracy of 83%, higher than Normal Distribution Naive Bayes Classifier of 76%. 

 

Given the experimental results on the Iris dataset, the best accuracy is 93% for both Stable and 
Normal Distribution Naive Bayes Classifiers at 𝛼 =1.9 and 𝛽 =0.5, However, overall, the Normal 

Distribution Naive Bayes Classifier shows greater fluctuation in accuracy, with the lowest 

accuracy dropping to 43%, which is even below random chance (50%). 
 

Out of 18 varying combinations of alpha and beta, 11 combinations exhibit higher accuracy with 

the Stable Distribution Naive Bayes Classifier compared to the Normal Distribution Naive Bayes 
Classifier. 

 

6 combinations exhibit the same performance for the Stable Distribution Naive Bayes Classifier 

and the Normal Distribution Naive Bayes Classifier, and only 1 combination shows lower 
accuracy with the Stable Distribution Naive Bayes Classifier. 

 

The result implies that in 94% of the parameter combinations, the Stable Distribution Naive 
Bayes Classifier either matches or outperforms the Normal Distribution Naive Bayes Classifier in 

terms of accuracy, and in 61% of them, the Stable Distribution Naive Bayes Classifier 

outperforms the Normal Distribution Naive Bayes Classifier in terms of accuracy. This result 

indicates that Stable Distribution Naive Bayes Classifier deals well with various parameter 
distributions that are often seen in real-world datasets where data points are not normally 

distributed. 

 
So far, we have analyzed the Stable Distribution Naive Bayes Classifier, which demonstrates 

overall superior performance with higher accuracy of classification and ita stability. The stable 

model’s adaptability through 𝛼, 𝛽, 𝛾, 𝛿 makes it highly effective for real-world datasets, 
especially when data deviates from normality. 
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6. CROSS-DATASET PERFORMANCE EVALUATION 
 
To further validate the effectiveness of the Stable Distribution Naive Bayes Classifier, we 

conducted additional experiments on several publicly available datasets: Wine, Social Network 

Ads, Diabetes, Electrical Grid Stability Simulated Data, and Vehicle Silhouettes. These datasets 

represent a diverse range of data distributions and classification challenges, testing the robustness 
and generalizability of the classifier. 

 

6.1. Summary of Results 
 

The results, summarized in Table 2, demonstrate that the Stable Distribution Naive Bayes 

Classifier outperforms the Gaussian Naive Bayes Classifier across these datasets. 
 

Table 2. Comparison of Stable and Normal Naive Bayes Classifier Accuracy Across Datasets 

 

Dataset Stable Accuracy Normal Accuracy 

Wine 0.98 0.98 

Social Network Ads 0.86 0.85 

Diabetes 0.74 0.73 

Electrical Grid Stability 

Simulated 
Data 

0.84 0.84 

Vehicle Silhouettes 0.66 0.58 

 

6.2. Analysis of Key Findings 
 
The Wine Dataset [12] features well-structured class separations with relatively low variability. 

The Stable Naive Bayes Classifier achieved an average accuracy of 98.46%, slightly 

outperforming the Gaussian model’s 97.69%. This result highlights the Stable model’s ability to 
maintain high accuracy even in datasets with a simple structure. 

 

The Social Network AdsDataset [13] involves userbehavior classification, where feature 

distributions often exhibit significant class overlap. The Stable Naive Bayes Classifier achieved 
86.25% accuracy, surpassing the Gaussian model’s 85.00%. The results demonstrate the Stable 

model’s advantage in capturing subtle distinctions in overlapping data distributions. 

 
The Diabetes Dataset [14] presents a classification challenge due to skewed and heavy-tailed 

feature distributions. The Stable Naive Bayes Classifier achieved 73.59% accuracy, showing a 

marginal improvement over the Gaussian model’s 72.73%. The results underscore the Stable 
model’s ability to handle complex, non-Gaussian distributions effectively. 

 

The Electrical Grid Stability Simulated Dataset [15] consists of well-balanced feature 

distributions designed to assess system stability. Both the Stable and Gaussian Naive Bayes 
models achieved an accuracy of 83.93%, indicating that in datasets with minimal skewness and 

heavy tails, the Stable model remains competitively accurate without a distinct advantage. 

 
The Vehicle Silhouettes Dataset [16] is characterized by high variability and complex feature 

distributions, making classification particularly challenging. The Stable Naive Bayes Classifier 
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significantly outperformed the Gaussian model, achieving 65.64% accuracy compared to 
57.67%. The dataset contains features with pronounced skewness and long tails, where the Stable 

model’s robustness in handling non-Gaussian distributions contributes to its superior 

performance. 

 

6.3. Implications 
 
These findings confirm the Stable Distribution Naive Bayes Classifier’s ability to generalize 

across diverse datasets, particularly in cases where the data deviates from the normality 

assumption. Its enhanced performance on datasets with heavy tails or skewness further 

underscores its utility as a robust and versatile classification tool for real-world applications. 
 

7. CONCLUSION 
 

In this paper, we have demonstrated howto use a Stable Distribution in aNaive Bayes Classifier 
by integrating the ”rstable” R package functions into Python. This package is more specialized 

than packages currently available in Python for stable distributions. The presented approach 

shows how such integration can be accomplished. The Stable Distribution in a Naive Bayes 
Classifier extends the standard naive Bayesian classifier and could result in higher accuracy in 

predicting complicated and various real-world datasets. 
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The ”StableNaiveBayes” and ”NormalNaiveBayes” classes demonstrate the Naive Bayes framework’s 

flexibility and simplicity, each tailored to different data distribution assumptions. ”NormalNaiveBayes” 

uses normal distribution parameters for prediction, suitable for symmetric data, while ”StableNaïveBayes” 

is designed for data with skewness or heavy tails, employing stable distribution parameters. Despite these 

methodological differences, bothclassesmaintainaneasy-to-followstructurewithmethodsforlearningfrom data 

(fit) and making predictions (predict). Their parallel design underscores the Naive Bayes classifier’s 
adaptability to various data types, making advanced statistical modeling accessible and straightforward. 

 

We also need to write an additional custom calling R functions within Python. First, we need to import the 

crucial library ”rpy2” to call R functions in Python. Then the ”fit calling R” function we define converts 

data from Python to R vectors and passes them to ”stable.fit” function of R to fit the stable distribution. 

Similarly, the ”predict calling R” function also uses the ”dstable” function to calculate the probability 

density of the stable distribution given the parameters. In this way, we have achieved interaction between 

Python and R. 
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