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ABSTRACT 
 
This study addresses the limitations of Gaussian Mixture Models (GMMs) in clustering complex 

datasets and proposes Elliptical Mixture Models (EMMs) as a robust and flexible alternative. By 

adapting the Expectation-Maximization (EM) algorithm to handle elliptical distributions, the study 

introduces a novel computational framework that enhances clustering performance for data with 

irregular shapes and heavy tails. Leveraging the integration of R’s advanced statistical tools into 

Python workflows, this approach enables practical implementation of EMMs. Empirical 

evaluations on three datasets Rice, Customer Churn, and Glass Identification demonstrate the 

superiority of EMMs over GMMs across multiple metrics, including Weighted Average Purity, 

Dunn Index, Rand Index, and Silhouette Score. The re- search highlights EMMs as a valuable tool 

for advanced clustering tasks and provides insights into their potential applications in handling 

real-world datasets with complex covariance structures. 
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1. INTRODUCTION 
 

The Gaussian Mixture Model (GMM) is a statistical approach extensively applied in clustering 

tasks within machine learning. It operates under the assumption that the data is generated from a 

combination of multiple Gaussian distributions, each representing a cluster, with the parameters 

of these distributions being estimated iteratively. This probabilistic framework enables GMM to 

effectively model intricate data structures, making it particularly advantageous for datasets with 

overlapping clusters and continuous features. [15]. This method simplifies clustering tasks by 

leveraging the Expectation-Maximization (EM) algorithm [1], making it a powerful tool for 

identifying underlying patterns in data. GMMs have been extensively studied and applied in 

various fields, as discussed in the comprehensive work by McLachlan and Peel [2]. 

 

Gaussian Mixture Models (GMMs) rely on the assumption that the underlying data conforms to a 

Gaussian distribution. This inherently imposes constraints, as Gaussian distributions are symmetric 

and feature lighter tails, limiting their capacity to capture more complex or heavy-tailed data 

patterns. (e.g. [13, 14]) EMMs allow for elliptical distributions, which can handle asymmetry and 

”fat” tails, providing a more flexible and robust approach to clustering. The statistical properties 

and implications of elliptical distributions for modeling multivariate data have been explored by 
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Kent and Tyler [5]. Also, Peel and McLachlan [6] have developed robust methods for fitting 

mixtures of t-distributions, a specific case of elliptical distributions, which are more resilient to 

outliers and heavy tails. Additionally, the work by Samorodnitsky and Taqqu [7] on stable non-

Gaussian processes provides a foundational understanding of the behavior of data that exhibits 

heavy tails, highlighting the importance of moving beyond Gaussian assumptions in probabilistic 

modeling. 

 

However, while previous studies have laid a strong theoretical foundation for elliptical distributions 

and their applications, their practical integration into clustering methods remains underexplored. 

Specifically, the adaptation of the Expectation-Maximization (EM) algorithm for Elliptical 

Mixture Models (EMMs) has not been systematically studied, particularly in the context of 

handling real-world datasets with non-Gaussian patterns and complex covariance structures. 

Additionally, most existing work focuses on theoretical models without providing a robust 

framework for implementing EMMs in practical machine learning workflows. This lack of 

accessible implementations and empirical validations on diverse datasets highlights the need for 

further exploration in this area. 

 

Therefore, the motivation behind this research stems from the inherent limitations of Gaussian 

Mixture Models (GMMs), which assume that data follows a Gaussian distribution characterized 

by symmetry and ”thin” tails. The limitations of GMMs in modeling non-Gaussian data have 

been well-documented [3, 4]. Real-world data often deviates from these assumptions, exhibiting 

more complex covariance structures and heavy tails. For instance, datasets in domains such as 

biomedical analysis, customer behavior modeling, and forensic science frequently display non-

Gaussian patterns that GMMs fail to capture effectively. These challenges highlight the need for 

more flexible models that can accommodate complex data structures and better reflect real-world 

scenarios. This work is further motivated by the limited practical applications and algorithmic 

customizations of Elliptical Mixture Models (EMMs) in addressing such challenges, despite their 

theoretical promise. 

 

This paper addresses the aforementioned gaps by making the following contributions: 

 

1. Customization of the EM Algorithm: We adapt the EM algorithm to handle elliptical 

distributions, extending its applicability beyond Gaussian data. This customization enables 

EMMs to effectively model datasets with non-Gaussian patterns and complex covariance 

structures. 

2. Integration of Statistical Tools: By integrating R’s advanced statistical functions with 

Python’s machine learning framework, we provide a seamless implementation for 

generating, fitting, and calculating elliptical probability densities, enhancing computational 

flexibility and accuracy. 

3. Improved Clustering for Complex Data: The proposed method demonstrates superior 

clustering performance compared to GMMs on real-world datasets characterized by non-

Gaussian patterns, as validated by experiments. 

4. Practical Applications: We illustrate the utility of EMMs through comprehensive 

experiments on three real-world datasets: the Rice dataset, the Customer Churn dataset, and 

the Glass Identification dataset. The results reveal that EMMs outperform GMMs under 

various conditions in terms of clustering accuracy and robustness. 
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2. METHODOLOGICAL BACKGROUND 
 

2.1. Maximum Likelihood Estimation and the EM Algorithm 
 

Probability quantifies the likelihood of an event, while likelihood evaluates how well a model 

explains observed data.  Maximum Likelihood Estimation (MLE) is a statistical method for 

estimating model parameters by maximizing the likelihood of the observed data. However, MLE 

faces challenges when dealing with latent variables, which are unobservable aspects of the data, 

such as cluster assignments in unsupervised learning. 

 

The Expectation-Maximization (EM) algorithm addresses these challenges by iteratively applying 

MLE in two steps: the Expectation Step (E-step) and the Maximization Step (M-step). In the E-

step, the algorithm calculates the posterior probabilities of latent variables given the current 

parameters. In the M-step, these probabilities are used to update the model parameters, 

maximizing the log-likelihood. This process repeats until the model converges, enabling the 

estimation of parameters in the presence of latent variables. 

 

2.2. Concept of Elliptical Distributions 
 

 
 

Figure 1. Comparison of clustering shapes between Elliptical Mixture Models (EMM) and Gaussian 

Mixture Models (GMM). The blue ellipses represent the clusters modeled by EMM, which allow for 

flexible shapes and can accommodate non-circular or elongated data distributions. In contrast, the red 

ellipses represent the clusters modeled by GMM, which are constrained to symmetric Gaussian 

distributions and struggle to capture data with elliptical patterns. The plot highlights the superior flexibility 

of EMM in capturing data distributions with varying eccentricities and orientations. 

 

Elliptical distributions generalize the multivariate Gaussian distribution by allowing for greater 

flexibility in modeling data characteristics such as tail behavior and shape. Defined by their 

elliptical level sets, these distributions include key parameters[11]: 

 

1. Shape Parameter (𝛼): Controls the heaviness of the tails. 

2. Location Parameter (𝛿): Specifies the central tendency, akin to the mean in Gaussian 

distributions. 

3. Covariance Matrix (Σ): Determines the shape and orientation of the ellipsoids. 

 

Gaussian distributions are a special case of elliptical distributions with 𝛼 = 2, but elliptical 

distributions can accommodate data with heavier tails and skewed structures. This flexibility 

makes them a powerful tool for modeling complex datasets, as illustrated in Figure 1. 
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2.3. Elliptical Mixture Model 
 

The Expectation-Maximization (EM) algorithm is widely used for estimating parameters in the 

presence of latent variables. When applied to elliptical mixture models, the algorithm is adapted 

to account for the elliptical characteristics of data distributions, making it more flexible than 

traditional Gaussian Mixture Models. 

 

The algorithm involves iteratively computing the responsibilities for each data point in the 

Expectation (E) step and updating the model parameters in the Maximization (M) step. For 

details on the mathematical formulation and implementation, refer to [11] and [12]. 

 

2.4. Differences Between Elliptical Mixture Models and Gaussian Mixture Models in 

Handling Datasets 
 

Both EMM and GMM rely on the EM algorithm for parameter estimation, but their underlying 

assumptions and applications differ significantly. Table 1 summarizes these differences. 

 
Table 1. Comparison of Gaussian Mixture Models and Elliptical Mixture Models 

 
 

Aspect Gaussian Mixture Models Elliptical Mixture Models 

Assumption Normally Distributed Data Flexible Shape and Tail 

Behavior 

Probability Based on Gaussian Density 

Function 

Based on Elliptical Density 

Function 

Parameter Updates mean (𝜇𝑘) and 

covariance (Σ𝑘) 

Updates location (𝛿𝑘), 
covariance, and shape (𝛼𝑘) 

 

Process Steps 

Multi-Normal fitting → Density 

estimation for Multi-Normal function 

Data → Covariance Matrix → 
Elliptical fit → NearPD regularization 

→ Elliptical stable probabilities 

Computation Time Faster due to native Python 

implementation 

Slower due to R function calls 

via rpy2 

 

By incorporating elliptical distributions, EMM provides greater flexibility and robustness, making 

it partic- ularly suitable for datasets with non-Gaussian characteristics. 

 

3. INTEGRATING R’S STABLE 5.3 PACKAGE WITH PYTHON FOR 

ELLIPTI- CAL MIXTURE MODELS 
 

3.1. Motivation for Integration 
 

Elliptical Mixture Models (EMM) require robust tools for defining, fitting, and estimating 

elliptical distri- butions. While R’s STABLE 5.3 package offers advanced statistical tools for 

robust elliptical distribution fitting, Python provides a more convenient environment for data 

handling, visualization, and machine learn- ing. Combining these strengths allows us to achieve 

robust modeling while leveraging Python’s efficient workflows. 

 

The integration is achieved through the rpy2 library, which acts as a bridge between Python and 

R. This package allows Python users to call R functions, access R objects, and utilize R’s extensive 

library ecosystem within Python workflows. By combining R’s statistical power with Python’s 

flexibility, we can create an efficient pipeline for robust statistical modeling and data analysis.  
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3.1.1. Overview of rpy2 

 

The rpy2 library serves as a Python interface to R, facilitating seamless communication 

between the two languages. One of its primary advantages is the ability to call any R function 

directly from Python through the rpy2.robjects module. This direct functionality significantly 

enhances the integration of R’s statistical capabilities into Python workflows. Additionally, rpy2 

supports automatic conversion between Python data structures, such as NumPy arrays and pandas 

DataFrames, and their R counterparts, including matrix and data.frame. This feature eliminates 

the need for manual data type adjustments, streamlining the integration process. 

 

The library also allows users to load and utilize R packages within Python scripts. For instance, the 

STABLE package, which offers robust tools for elliptical distribution modeling, can be leveraged 

in Python through rpy2. Furthermore, rpy2 is particularly well-suited for interactive applications, 

as it integrates seamlessly with Jupyter Notebooks. This compatibility makes it an excellent 

choice for exploratory data analysis and visualization tasks. 

 

By combining Python’s versatility and machine learning capabilities with R’s statistical 

expertise, rpy2 enables the creation of efficient and powerful workflows for complex data science 

projects. 

 

3.1.2. When to Use rpy2? 

 

The rpy2 library proves particularly valuable in several scenarios, especially those requiring the 

integration of Python and R’s unique strengths. First, it is indispensable for accessing specialized 

R packages that provide advanced statistical tools or visualization capabilities unavailable in 

Python. For example, tasks such as fitting elliptical distributions using the STABLE package can 

be efficiently accomplished with rpy2. 

 

Second, the library is highly effective in interdisciplinary projects that combine R’s statistical 

analysis capabilities with Python’s machine learning workflows. By facilitating seamless 

integration, rpy2 enables researchers to leverage the best features of both languages without 

compromising efficiency. 

 

Third, rpy2 supports the reuse of existing R-based models or analyses within Python 

environments. This eliminates the need to rewrite models, saving time and effort while ensuring 

consistency in statistical computations. Finally, it enhances workflows involving complex 

visualizations, allowing users to utilize R’s sophisticated visualization libraries, such as ggplot2, 

in conjunction with Python’s data processing capabilities. 

 

By bridging the gap between Python and R, rpy2 creates an interoperable and efficient pipeline 

for data science tasks, enabling researchers to address complex challenges by combining the 

strengths of both languages. 

 

3.1.3. Further Reading 

 

For a detailed introduction to rpy2, refer to the official documentation [17]. Additional examples 

and use cases can be found in Mu¨ller’s book [16] and Urbanek’s research on R-Python 

integration [18]. 

 

 

3.2. Overview of the Implementation Process 
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The integration follows these steps: 

 

1. Setting up the Python environment: Import necessary libraries, configure the rpy2 
environment, and activate data conversion between NumPy and R. 

2. Defining and fitting elliptical distributions: Use R’s mvstable.elliptical() to define the 

distribu- tions and mvstable.fit.elliptical() to estimate their parameters, as explained 

in Appendix A.2. 

3. Handling positive definite matrices: Employ the nearPD() function to ensure covariance 

matrices are valid for probability density calculations. 

4. E-step in the EM algorithm: Calculate the posterior probabilities (responsibilities) of each 

data point for all distributions. 

5. M-step in the EM algorithm: Update the parameters of each distribution and the mixture 

weights based on the calculated posterior probabilities. 

6. Iterative convergence: Repeat E-step and M-step until the algorithm converges to a stable 

solution. 

 

Each of these steps utilizes R’s robust statistical capabilities, while the workflow is managed 

within Python for ease of integration and analysis. 

 

3.3. Key Considerations in Integration 
 

Handling Non-Positive Definite Matrices: The output covariance matrix from 

mvstable.fit.elliptical() may not always be positive definite, which is required for calculating 

the PDF using dmvstable.elliptical(). To address this, we use the nearPD() function from the 

R package Matrix, which adjusts the matrix to be positive definite while preserving its original 

structure. 

 

Data Transformation Between Environments: The numpy2ri module of rpy2 ensures 

seamless con- version of data between Python’s NumPy arrays and R’s matrix objects, allowing 

the integration to work smoothly without manual data type adjustments. 

 

3.4. Code Implementation 
 

The implementation details for integrating R’s advanced statistical capabilities into Python 

workflows are outlined in Appendix A. These include step-by-step instructions for importing 

libraries, defining and fitting elliptical distributions, and calculating their probability density 

functions. Specifically, Appendix A.1 describes the process of importing the necessary libraries 

and managing potential warnings during the integration. Appendix A.2 provides details on 

defining and fitting elliptical mixture models, ensuring accurate parameter estimation. Finally, 

Appendix A.3 explains the procedure for calculating probability density functions for elliptical 

distributions. 

 

By following the methodology presented in these appendices, users can effectively utilize R’s 

advanced statistical tools within Python workflows, enabling robust and seamless modeling of 

elliptical distributions. This approach not only enhances computational flexibility but also bridges 

the gap between the statistical strengths of R and the machine learning capabilities of Python. 

 

3.5. E-step in the EM Algorithm 
 

During the Expectation (E-step) of the algorithm, the posterior probabilities, also referred to as 

responsi- bilities, are calculated for each data point relative to all distributions in the mixture 
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model. This process involves several critical steps. First, the posterior probabilities for each data 

point are computed using the probability density function (PDF) and the corresponding mixture 

weights. Next, these probabilities are normalized across all distributions to ensure they sum to one 

for each data point. Finally, labels are assigned to each data point based on the distribution with 

the highest posterior probability. 

 

The computed posterior probabilities are instrumental in determining a weighted log-likelihood for 

the data, which acts as a key convergence metric for the Expectation-Maximization (EM) 

algorithm. A detailed Python implementation of the E-step is provided in Appendix A.4. 
  

3.6. M-step in the EM Algorithm 
 

In the Maximization (M-step) of the Expectation-Maximization (EM) algorithm, the parameters 

of the distributions and the mixture weights are updated based on the responsibilities computed in 

the Expectation (E-step). This step begins with recalculating the mixture weights as the sum of 

the responsibilities for each distribution. Subsequently, the mean, covariance, and additional 

parameters of each distribution are updated using the weighted data points. To ensure robustness, 

R’s mvstable.fit.elliptical() function is employed to estimate key parameters, including the 

shape (𝛼), location (𝛿), and other relevant properties of the distributions. 

 

These updates allow the model to better capture the underlying structure of the data in subsequent 

iterations. Further details on the implementation of the M-step can be found in Appendix A.4. 

 

3.7. Iterative Convergence 
 

The Expectation-Maximization (EM) algorithm iteratively alternates between the Expectation (E-

step) and Maximization (M-step) to refine model parameters until convergence. This process 

ensures that the clustering procedure yields optimal and robust parameter estimates. The 

convergence of the algorithm is monitored using specific criteria to determine when stable values 

have been reached. 

 

Firstly, log-likelihood stability is employed as a primary convergence criterion. The algorithm is 

considered to have converged when the change in the log-likelihood of the data between 

consecutive iterations falls below a predefined threshold, such as 10−6. This approach ensures 

that the algorithm halts when further iterations yield no significant improvement in the model’s 

fit. 

 

Secondly, parameter stability provides an additional measure of convergence. This criterion 

evaluates whether updates to critical model parameters, such as mixture weights, means, and 

covariance matrices, become negligible across iterations. When these updates fall below a minimal 

threshold, the parameters are deemed stable, and the algorithm terminates. 

 

Finally, a maximum number of iterations is defined to prevent infinite looping. This safeguard is 

particu- larly important in edge cases where the algorithm fails to converge due to complex data 

structures or poor initialization. By capping the number of iterations, the process ensures 

computational efficiency without compromising the reliability of the clustering results. 

 

By employing these criteria collectively, the EM algorithm achieves a balance between convergence 

accuracy and computational efficiency, ensuring robust performance in clustering and parameter 

estimation tasks. 
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For detailed implementation of this iterative process, including the E-step and M-step functions, 

refer to Appendix A.4. 

 

4. METHODOLOGY 
 

4.1. Dataset Description 
 

This study employs three datasets: the Rice dataset, the Customer Churn dataset, and the Glass 

Identification dataset. Each dataset presents unique characteristics and challenges, making them 

suitable for demonstrating the capabilities of Gaussian Mixture Models and Elliptical Mixture 

Models. 

 

1. Rice Dataset [8]: This multivariate dataset includes 3,810 instances of rice grains from two 

species, with 7 morphological features extracted from images of each grain. These 

attributes, derived from grain images, include area, perimeter, lengths of the major and 

minor axes, eccentricity, convex area, and extent. The dataset also contains class labels 

identifying the species of each grain. The dataset is primarily used for classification tasks 

in the biology domain. 

2. Customer Churn Dataset [9]: This multivariate dataset includes 13 features related to 

customer behavior, such as call failures, subscription length, usage frequency, SMS 

frequency, distinct called numbers, age, customer value, and churn status, with 3,150 

instances. Binary features were removed because the EM algorithm, particularly when used 

with Gaussian Mixture Models (GMMs) or Ellip- tical Distribution Mixture Models 

(EMMs), assumes that the data follows a continuous distribution. Binary features, being 

categorical, do not naturally fit into these distributional assumptions, which can complicate 

the modeling process. 

3. Glass Identification Dataset [10]: This multivariate dataset consists of 214 instances of 

glass samples, categorized into 6 types based on their oxide content.This dataset contains 

nine continuous features, including the refractive index and the weight percentages of 

various oxides such as sodium, magnesium, aluminum, silicon, potassium, calcium, barium, 

and iron. The target label identifies the type of glass, making it a valuable resource for 

classification tasks. Its primary applications are in physics and chemistry, particularly in 

forensic science, where it aids in determining glass types based on their chemical 

composition. 

 

4.2. Data Preprocessing and Parameter Initialization 
 

To ensure the datasets were suitable for clustering using Gaussian Mixture Models (GMMs) and 

Elliptical Mixture Models (EMMs), several preprocessing steps were applied. These steps 

prepared the data for effective clustering while maintaining the validity of distributional 

assumptions. 

 

First, standardization was performed on the features of each dataset using StandardScaler. This 

process ensured that all features had zero mean and unit variance, mitigating the sensitivity of 

clustering algorithms to differences in feature scaling. 

 

Second, encoding labels was carried out for the datasets. Class labels were transformed into 

numerical values using LabelEncoder, facilitating compatibility with clustering evaluation 

metrics, such as the confusion matrix and purity calculations. 
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Third, categorical feature handling was implemented, specifically for the Customer Churn 

dataset. Binary features were removed to align with the assumptions of GMM and EMM, which 

operate under the premise of continuous distributions. This step ensured that the models were 

applied appropriately to the datasets. 

 

Following preprocessing, the clustering parameters were initialized as follows: 

 

Centroids: Initial cluster centroids were randomly sampled within the range of feature values for 

each dataset. This approach ensured that the starting centroids were diverse and representative of 

the overall data distribution. 

 

Covariance Matrices: Covariance matrices for each cluster were initialized as identity matrices. 

This configuration provided equal variance across all dimensions at the start of the clustering 

process, facilitating balanced parameter estimation. 

 

Mixing Coefficients: Mixing coefficients were initialized with an even distribution across 

clusters unless explicitly specified. This ensured that no cluster was given undue weight during 

the early stages of the algorithm. 

These preprocessing and initialization steps collectively ensured that the datasets were well-

prepared for clustering, allowing GMMs and EMMs to operate effectively and produce 

meaningful results. 

 

4.3. Evaluation Metrics 
 

The performance of Gaussian Mixture Models (GMMs) and Elliptical Mixture Models (EMMs) 

was com- pared using several widely recognized evaluation metrics. These metrics provide 

complementary perspec- tives on clustering quality, allowing for a comprehensive assessment of 

model performance. 
  

4.3.1. Weighted Average Purity 

 

The Weighted Average Purity evaluates the alignment of clusters with the actual class labels by 

calculating the proportion of correctly grouped elements within each cluster. This metric is 

computed as the weighted average of the purity of each cluster, with higher values indicating a 

stronger correspondence between predicted clusters and true labels. Weighted Average Purity is 

particularly useful for assessing clustering outcomes when ground truth labels are available [19, 

20]. 

 

4.3.2. Dunn Index 

 

The Dunn Index assesses the compactness and separation of clusters. Compactness reflects the 

closeness of points within the same cluster, while separation measures the distance between 

distinct clusters. A higher Dunn Index indicates better clustering performance, as it reflects well-

separated and compact clusters. This metric was originally introduced by J. C. Dunn to evaluate 

clustering quality in fuzzy partitions [21, 22]. 

 

4.3.3. Rand Index 

 

The Rand Index measures the similarity between predicted cluster assignments and actual labels. It 

evaluates all pairs of samples to determine whether they belong to the same or different clusters in 

both the predicted and actual groupings. A Rand Index of 1 indicates perfect agreement between 

predicted and true clustering assignments. This metric has been widely employed in clustering 
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validation since its introduction by W. M. Rand [23, 24]. 

 

4.3.4. Silhouette Score 

 

The Silhouette Score quantifies how similar a data point is to its own cluster compared to other 

clusters. It ranges from -1 to 1, with higher values indicating better clustering quality. The 

Silhouette Score combines insights into cluster cohesion (how tightly grouped the points in a 

cluster are) and separation (how distinct a cluster is from others). This metric, introduced by P. J. 

Rousseeuw, serves as a robust tool for interpreting and validating clustering results [25, 26]. 

 

4.4. Model Convergence 
 

The training of Gaussian Mixture Models (GMMs) and Elliptical Mixture Models (EMMs) was 

conducted iteratively using the Expectation-Maximization (EM) algorithm. The convergence of 

the models was evaluated based on predefined criteria to ensure robust and stable solutions while 

minimizing the risk of overfitting or excessive computation. 

 

The criteria were employed to determine convergence: Log-Likelihood Tolerance and Maximum 

Iterations. 

 

The iterative process was terminated when the absolute difference in log-likelihood values between 

consec- utive iterations fell below a predefined tolerance threshold of 10−4. This ensured that the 

models reached a stable state with minimal fluctuations in their likelihood values. 

 

To safeguard against infinite loops in edge cases, a maximum limit of 1000 iterations was 

imposed. This constraint provided a balance between computational efficiency and the 

thoroughness of parameter opti- mization. 

 

By adhering to these convergence criteria, the models achieved stable and reliable solutions, 

facilitating an accurate comparison of clustering performance across different datasets and 

methodologies. 

 

5. RESULTS 
 

This section compares the clustering performance of Gaussian Mixture Models (GMM) and 

Elliptical Mixture Models (EMM) on three datasets. We provide visualizations of clustering 

distributions and detailed analysis using evaluation metrics to highlight scenarios where Elliptical 

Mixture Models outperforms Gaussian Mixture Models and vice versa. 
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5.1. Rice Dataset 
 

 
 

 

Figure 2. True Label for Rice Dataset 

 

 

 
 

Figure 3. Gaussian Mixture Models for Rice Dataset 

 

 
 
 

Figure 4. Elliptical Mixture Models for Rice Dataset
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Using PCA for dimensionality reduction, these plots present the data in two dimensions. In each 

plot, different colors represent the identified clusters or classes, and the black ’X’ marks indicate 

the centroids. Figure 2 illustrates the distribution of true class labels in the dataset, serving as a 

reference point for evaluating clustering outcomes. Figure 3 presents the optimized clustering 

results obtained using a Gaussian Mixture Model (GMM), which models the data as a 

combination of multiple Gaussian distributions. The Final Optimized Elliptical Clusters in the 

Figure 4, which resulted in 2 clusters instead of 5 as in GMM, suggests  that the data may be better 

represented by fewer, more cohesive groups when considering elliptical rather than Gaussian 

distributions. 

 

Table 2. Evaluation Metrics for Rice Dataset: This table compares the performance of Elliptical 

Mixture Models (EMM) and Gaussian Mixture Models (GMM). EMM outperforms GMM across 

all metrics. For example, EMM achieves a higher Weighted Average Purity (0.8837 vs. 0.8472), 

Dunn Index (0.0081 vs. 0.0079), Rand Index (0.7944 vs. 0.6175), and Silhouette Score (0.3734 vs. 

0.0564), demonstrating better clustering performance and alignment with ground truth labels. 

 
Table 2. Evaluation Metrics for Rice Dataset: 

 

Metric Elliptical MM Gaussian MM 

Weighted Average Purity 0.8837 0.8472 

Dunn Index 0.0081 0.0079 

Rand Index 0.7944 0.6175 

Silhouette Score 0.3734 0.0564  

 

5.2. Customer Churn Dataset 
 

 
 

Figure 5. True Labels for Customer Churn Dataset 
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Figure 6. Gaussian Mixture Models for Customer Churn Dataset 

 

 
 

Figure 7. Elliptical Mixture Models for Customer Churn Dataset 

 

Figure 5 shows the distribution of the original customer churn labels, with overlapping classes that 

suggest challenges for clustering. Figure 6, using a Gaussian Mixture Model (GMM), divided the 

data into 5 clusters but retained some overlap, reflecting GMM’s assumption of spherical 

distributions. Figure 7, using an Elliptical Mixture Model (EMM), identified 3 more cohesive 

clusters, suggesting that the data is better represented by fewer elliptical clusters. 

 

Table 3. Evaluation Metrics for Customer Churn Dataset: This table compares the performance 

of Elliptical Mixture Models (EMM) and Gaussian Mixture Models (GMM) on the Customer 

Churn dataset. EMM demonstrates superior performance across most metrics, with significantly 

higher Dunn Index (0.0182 vs. 0.0059), Rand Index (0.5385 vs. 0.4312), and Silhouette Score 

(0.2912 vs. 0.1119). Both models achieve the same Weighted Average Purity (0.8429), indicating 

similar alignment with true class labels. These results suggest that EMM provides better clustering 

quality, particularly in terms of cluster separation and compactness, compared to GMM. 
Table 3. Evaluation Metrics for Customer Churn Dataset 
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Metric Elliptical MM Gaussian MM 

Weighted Average Purity 0.8429 0.8429 

Dunn Index 0.0182 0.0059 

Rand Index 0.5385 0.4312 

Silhouette Score 0.2912 0.1119  

 

5.3. Glass Identification Number Dataset 
 

 
 

Figure 8. True Labels for Glass Identification Number Dataset 

 

 
 

Figure 9. Gaussian Mixture Models for Glass Identification Number Dataset 
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Figure 10. Elliptical Mixture Models for Glass Identification Number Dataset 

 

The three images compare clustering results for the Glass Identification dataset using different 

approaches. Figure 8 shows the true distribution of the glass types, where some classes overlap, 

particularly in the central region, while others are more distinct. The GMM clustering in the Figure 

9 results demonstrate the model’s attempt to divide the data into six clusters, corresponding to 

the number of true labels. However, there is significant overlap between clusters, indicating that 

the Gaussian assumption may not perfectly capture the data’s structure. In contrast, the EMM 

clustering in the Figure 10 simplifies the data into two broader clusters, suggesting that the 

elliptical model found the data structure to be more consistent with fewer, larger clusters. This 

approach reduces overlap and highlights a potentially underlying bimodal structure in the dataset, 

although it may lose some granularity compared to GMM. 

 

Table 4. Evaluation Metrics for Glass Identification Dataset: This table compares the 

performance of Elliptical Mixture Models (EMM) and Gaussian Mixture Models (GMM) on the 

Glass Identification dataset. GMM performs slightly better in Weighted Average Purity (0.4813 

vs. 0.4579) and Rand Index (0.5271 vs. 0.4446), indicating a closer match with true class labels 

in these metrics. However, EMM shows a clear advantage in terms of Dunn Index (0.0983 vs. 

0.0346) and Silhouette Score (0.3525 vs. 0.1490), suggesting superior cluster separation and 

compactness. These results highlight the trade-offs between the two models, with EMM excelling 

in structural clustering quality and GMM aligning more closely with the ground truth. 

 
Table 4. Evaluation Metrics for Glass Identification Dataset 

 

Metric Elliptical MM Gaussian MM 

Weighted Average Purity 0.4579 0.4813 

Dunn Index 0.0983 0.0346 

Rand Index 0.4446 0.5271 

 Silhouette Score 0.3525 0.1490  

 

6. CONCLUSION 
 

This study investigated the performance of Elliptical Mixture Models (EMMs) in comparison to 

Gaussian Mixture Models (GMMs) across three datasets: Rice, Customer Churn, and Glass 

Identification. The results demonstrated that EMMs exhibited superior performance in specific 

cases, particularly when han- dling datasets with complex and non-Gaussian data distributions. 
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However, it is important to note that these findings are based on a limited number of datasets. 

Consequently, EMMs should be regarded as a complementary alternative to GMMs, particularly 

in scenarios where the underlying data exhibits elliptical or non-Gaussian structures. 

 

Beyond clustering, EMMs hold potential in various domains. Their ability to model elliptical or 

heavy-tailed distributions makes them suitable for anomaly detection in areas such as financial 

transactions, network security, and healthcare records. EMMs also provide robust solutions for 

density estimation, crucial for probabilistic modeling, risk assessment, and generative tasks. 

Additionally, their capacity to capture non- Gaussian distributions enhances classification tasks, 

improving probabilistic classifiers like Bayesian and semi-supervised learning models. 

 

EMMs can further aid in dimensionality reduction, such as Principal Component Analysis, by 

better representing elliptical data distributions, and they show promise in multimodal data 

integration, enabling the analysis of diverse structured and unstructured datasets. While these 

applications highlight the versatility of EMMs, further research is needed to validate their efficacy 

across broader datasets and real-world scenarios. Future work should focus on integrating EMMs 

into machine learning pipelines and optimizing their computational performance.  
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APPENDICES 
 

A.1. Code for Calling R Functions in Python 

 
This appendix provides the Python code for defining, fitting, and calculating elliptical distributions using R 

functions via the rpy2 library. 

 

 
 
 

 

 

https://en.wikipedia.org/wiki/Elliptical_distribution
https://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model
https://rpy2.github.io/doc/
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A.2. Defining and Fitting Elliptical Mixture Models 
 

The following functions define elliptical distributions and fit them to data using R’s STABLE 5.3 package. 
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A.3. Calculating the PDF 
 

The dmvstable.elliptical() function calculates the PDF for elliptical distributions. 

 

 
 
A.4 E-step and M-step in the EM Algorithm 
 

E-step: Calculating Posterior Probabilities In the E-step, we calculate the posterior probability of each 

data point belonging to each distribution. 

 

 
 

M-step: Updating Parameters The parameters for each distribution, along with the mixture weights, are 

recalculated and refined. 
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The complete code and implementation details can be found at the link provided here: https://drive. 

google.com/file/d/12mNFhNoShCfVje9sAZXaVcqY0SwHRRuO/view?usp=sharing 

 


