International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

Unified Load Balancing Strategies for Enhanced
Cloud Computing Solutions

Tearlach Magri and Rebecca Camilleri

Department of Computer Information Systems, University of Malta, Msida, Malta

Abstract. Cloud computing provides scalable, on-demand resources that support a wide range of services
and applications. Efficient load balancing in cloud environments is critical when maintaining performance
and quality of service. A hybrid Ant Colony Optimisation — Genetic Algorithm (ACO-GA) method is pro-
posed for task scheduling in a hybrid cloud, implemented and evaluated using the CloudAnalyst simulator.
The custom algorithm leverages ACO’s rapid local search for assigning workloads to virtual machines
and GA’s global evolutionary search to diversify solutions. The ACO-GA is compared against Round
Robin, pure ACO and pure GA strategies. Performance is measured by overall response time and data
centre processing time. Simulation results indicate that the proposed ACO-GA outperforms the baseline
strategies in both response time and data centre processing time, demonstrating that combining ACO’s
pheromone-guided optimisation and GA’s genetic exploration leads to more balanced loads.

Keywords: Cloud Computing, Load Balancing, Round Robin, Ant Colony Optimisation, Genetic Algo-
rithm

1 Introduction

Cloud computing is an emerging field that is rapidly advancing in industry as well as in
research, moving computing and data away from desktop and portable PCs into large
data centres [1]. In this environment, users are unaware of the physical locations of the
underlying infrastructure. They simply consume services via the cloud paradigm and pay
only for the resources they use [2]. Virtualisation underpins cloud computing by allowing a
single physical server to host multiple operating systems and applications simultaneously,
delivering services through isolated virtual instances [2]. The National Institute of Stan-
dards and Technology (NIST) describes cloud computing as a framework that provides
users with seamless, on-demand network access to a shared pool of configurable computing
resources — such as networks, servers, storage, applications and services — that can be
quickly allocated and released with minimal management overhead or direct interaction
with the service provider [3].

In cloud computing, the primary challenge is efficiently and accurately processing the
massive, rapidly arriving stream of user requests. This requirement makes load balancing
essential: by evenly distributing work, it prevents any single server or virtual machine
(VM) from becoming a bottleneck, thereby maximising throughput and user satisfaction.
In large-scale hybrid clouds — where private and public data centres coexist — static task
assignment cannot cope with unpredictable workload shifts. Random request surges can
leave some nodes overloaded while others remain idle, harming overall performance [4].
Consequently, adaptive, real-time scheduling mechanisms are needed to reallocate tasks
dynamically and maintain balanced utilisation.

Traditional methods like Round Robin (RR) or simple throttling are easy to imple-
ment but often fail under heterogeneous workloads, leading to increased response times
or bottlenecks. Nature-inspired metaheuristics, notably Ant Colony Optimisation (ACO)
and Genetic Algorithm (GA), have been widely studied for task scheduling in different

Bibhu Dash et a: EDU, IOTCB, MLDA - 2025 o
pp. 29-39, 2025. 1JCI — 2025 DOI:10.5121/ijci.2025.140403

https://doi.org/10.5121/ijci.2025.140403
https://ijcionline.com/volume/v14n4

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

areas. ACO simulates ant foraging behaviour with pheromone trails to find good allocation
paths, while GA uses evolutionary operators, such as selection, crossover and mutation, to
evolve scheduling solutions [4,5]. Both techniques provide complementary advantages that
can be leveraged together. ACO quickly exploits good local paths [4], whereas GA provides
global search to escape local optima. Integrating ACO and GA can potentially combine
these advantages. Indeed, recent work has shown that hybrid metaheuristics approaches
can outperform single-method strategies [5,6]. The specific integration of ACO and GA
used in this work is novel: the proposed algorithm introduces a distinct two-phase syn-
ergy (ACO followed by GA) including a candidate-selection step and adaptive mutation
schedule.

A comprehensive experimental evaluation benchmarks the proposed approach against
RR, ACO-only and GA-only schedulers using overall response time and data centre pro-
cessing time metrics. The analysis demonstrates that the hybrid method delivers significant
improvements in both response and processing times, aligning with previous studies that
highlight the superiority of hybrid metaheuristics over individual heuristics [5,6]. Finally,
the implications of these findings for future cloud load balancing strategies are discussed.

The remainder of this paper is organised as follows. Section 2 reviews related work
on cloud load balancing, ACO, GA and hybrid algorithms. Section 3 describes the hybrid
ACO-GA methodology in detail. Section 4 outlines the experimental setup in CloudAna-
lyst. Section 5 presents simulation results and discussion. Section 6 concludes the paper
and suggests future work.

2 Related Work

Efficient load balancing algorithms must optimise response time and resource utilisa-
tion [7]. A study by Shafiq et al. [8] note that a good load balancer distributes workloads
to ensure high user satisfaction by effectively utilising VM resources. Load balancing algo-
rithms are often classified as static or dynamic. Static methods, such as RR, use pre-known
information but cannot adapt to workload changes. Dynamic methods adapt to current
loads but require more complexity. Common algorithms include RR, Throttled and Active
Monitoring, which maintain VM allocation tables or track current loads [9].

RR is a baseline strategy that cyclically assigns requests to servers. It is stateless
and easy to implement, but can overload slow servers if capacities differ. Throttled Load
Balancer checks for an available VM and queues requests if none is free, improving on
naive approaches.

To improve performance, researchers have applied metaheuristic algorithms. The ACO,
introduced by Dorigo in the 1990s [10], simulates pheromone-guided paths taken by ants to
find optimal routes. In cloud load balancing, ACO variants have been proposed to assign
tasks to VMs based on pheromone intensity reflecting server capacity or response time [4].
For instance, Nishant et al. [4] present a modified ACO that continuously updates a single
pheromone matrix for all ants, achieving more balanced node workloads than classical
ACO. Their work demonstrates that ACO can effectively improve load distribution in a
cloud setting. However, ACO alone may converge to suboptimal allocations if pheromone
information becomes biased or outdated.

Genetic Algorithm is another popular metaheuristic for scheduling. It treats each po-
tential scheduling as a chromosome in a population and evolves solutions via selection,
crossover and mutation. Dasgupta et al. [11] propose a GA-based load balancing strat-
egy, simulating it with CloudAnalyst. They prioritise tasks and initialise GA populations
accordingly. Their results show GA outperforming simple schedulers like First-Come First-
Served, RR and Stochastic Hill Climbing in terms of response time. GAs are well-suited to

30

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

NP-hard problems like load balancing, as they can explore diverse assignments and avoid
local optima [6,11]. However, pure GA may require many generations to converge, and its
performance is sensitive to operator settings.

Several load balancing strategies, including recent metaheuristic hybrids, have been
proposed. For instance, Lilhore et al. [5] integrate ACO with Water Wave Optimisation in a
multi-objective cloud scheduler, achieving notable efficiency gains. Dey and Sangaraju [12]
introduced a bio-inspired hybrid strategy using ACO and Particle Swarm Optimisation,
demonstrating improved response times and energy efficiency in cloud data centers. The
proposed approach is unique due to its two-phase ACO-GA design. The process begins
with a dedicated ACO phase to narrow down candidate VMs, followed by a GA phase
applied to that subset. Additionally, an adaptive mutation mechanism is employed, where
the mutation probability decreases with each generation, alongside a specific candidate
selection step. These innovative elements of the integration form the core contribution.

3 Proposed ACO-GA Load Balancing Methodology

This section presents the hybrid ACO-GA load balancing algorithm’s design. It begins
with a concise overview of ACO and GA fundamentals, followed by a detailed explanation
of their integration.

3.1 Ant Colony Optimisation Principles

ACO is a metaheuristic that finds high-quality paths through graphs by mimicking ant
foraging. In ACO, a set of artificial ants iteratively construct solutions; at each step, an
ant chooses the next node to assign based on a probability that depends on pheromone
levels and heuristic desirability. When an ant completes a tour, that is a full assignment
of tasks, the quality of the solution (low response time) is evaluated. Pheromones are then
updated: paths that led to better solutions receive more pheromone reinforcement, while
pheromone evaporates on others [4]. Over time, good allocations accumulate pheromone
and attract more ants, guiding the search toward effective load distributions.

Formally, if ant k at state (task assignment) chooses VM j, the transition probability
is often proportional to T niﬂj, where 7;; is pheromone, 7;; is a heuristic (e.g. inverse of
current load) and «, § tune their importance. This indirect communication allows ants to
exploit promising assignments [4,5]. However, pure ACO can stall if pheromone converges
prematurely. The proposed method uses ACO to quickly improve load balance in the short
term (exploitation) before GA introduces new diversity.

3.2 Genetic Algorithm Principles

GAs evolve a population of candidate solutions via natural selection. A candidate solution
(chromosome) encodes a complete task-to-VM assignment. The fitness of each chromo-
some is measured by the objective, such as low response time or balanced load. In each
generation, selection chooses fitter chromosomes, which are recombined by crossover (ex-
changing parts of two chromosomes) and mutation (randomly altering some assignments)
to create new offspring. This drives the population towards better regions of the solution
space.

For cloud load balancing, each chromosome is represented as an array mapping tasks
or user requests to VMs. Crossover might swap subsets of assignments between two parent
solutions, while mutation could reassign a single task to a different VM. Over successive
generations, GA converges to high-quality solutions, effectively exploring the solution space

31

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

globally [6,11]. GAs are robust to complex, multimodal objectives but may require many
iterations, which we mitigate by interleaving with the faster ACO search.

3.3 Hybrid ACO-GA Integration

As shown in Figure 1, the proposed ACO-GA hybrid algorithm runs a fixed ACO phase
followed by a GA phase over the top-ranked candidates, as follows:

Run ACO
Iterations ACO
 Quality-based
l pheromone
» Best-ant
Select Top reinforcement
Candidates
GA
l o Elitism
* Gene-level
Run QA b crossover
Candidates « Adaptive mutation
Final VM
Allocated

Fig. 1. Hybrid ACO-GA load balancing algorithm flowchart

1. Pheromone Initialisation A pheromone matrix 7 € RV*¥ is initialised whenever
the VM set changes by

7:.5(0) = 10 Vi,j€{l,...,N},

where N is the current number of VMs and 7 is the initial pheromone level.
2. ACO Phase T\co iterations are performed. In each iteration t:

(a) Ant exploration — Each of m ants builds a tour (a permutation of all VMs). From
VM i, the next VM j is chosen with probability

[73,5(0)]% (;)°

S)] (m)”

k¢S,

Pz‘—)j =

)

where 7; = 1 4 bwj; is the heuristic (bandwidth), a, 5 control the relative weight,
and S; is the set of already visited VMs.
(b) Local trail laying — As each ant traverses edge (i — j), immediately

Ti,j(t) — Tiﬂ‘(t) + 70-
32

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

(c) Evaluation & global reinforcement — After all ants finish, each ant’s average
free-bandwidth fitness is computed:

1 maxBw; — curBwy
QW = — Z)
N

maxBw
kEtour, k

Let a* be the best ant. Its edges are then reinforced:
7ii(t) — () + Q) for each (i — j) € toury:.
(d) Evaporation — Finally,

St
Ti(t+1) = Tz’]p(), p> 1.

3. Candidate Selection After Txco iterations, each VM’s pheromone strength is com-
puted:

N
sj = D Tigs
i=1

then the top M VMs by s; form the GA candidate set.
4. GA Phase Let the candidate set be indexed 1,...,M. A population of size P is
evolved for G generations with:
(a) Encoding — Each individual is an integer g € {1,..., M }.
(b) Fitness — The fitness of individual g is

maxBw., — curBw,,

flg) = ,

maxBw,,

where ¢, is the g-th candidate VM.
(c) Elitism — The best individual is carried unchanged into the next generation.
(d) Tournament selection, crossover, mutation — For each new offspring pair:
— Two parents are selected using tournament selection with size Tiour-
— Genes are swapped with probability p..
— Each gene is mutated to a uniform random value in [1, M] with probability p;,,
where p,, decays by 1% per generation.

5. Final Allocation After G generations, the individual with highest fitness is chosen
and mapped back to its VM ID; this becomes the selected host.

This two-phase design bootsraps GA over the best M VMs identified by ACO, achiev-
ing rapid convergence without full search over all VMs. In other words, the ACO phase
reduces the search space to a promising subset of servers and the GA phase then effi-
ciently finds a near-optimal assignment among that subset, combining the strengths of
both metaheuristics.

Algorithm 1 outlines the hybrid algorithm at a high level. In practice, this algorithm is
triggered with each scheduling decision to select the target VM for an incoming task. The
novel aspects highlighted in the pseudocode include the selection of a limited candidate
set after the ACO phase and the gradual reduction of mutation probability across GA
generations.

33

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

Algorithm 1 VM Selection Using ACO and GA
1: Inputs: N VMs; parameters m (ant count), T4co, M, P (GA population), G (GA
generations), «, [(pheromone/heuristic weights), p (evaporation factor), p., pm
(crossover, mutation rates).

2: Output: Selected VM for the incoming task.
3: Initialise pheromone matrix 7[i][j] = 7o for all VM pairs (3, j).
4: ACO Phase
5: for t =1 to Taco do
6: for each ant a =1 to m do
7 Construct a complete tour of VMs using transition probability
P(i = j) oc 7[il[j1* -]
: Update 7 locally by adding 79 on each traversed edge.
9: Evaluate fitness Q(a) for each ant (average free bandwidth of visited VMs).
10: a* < ant with highest Q.
11: for each edge (i — j) in tour of a* do
12: Tli][g] < 7li][j] + Q(a*) # global pheromone update
13: end for

14: end for
15: for all 7,5 do

16: 7[i][7] < Tli][j]/p # evaporation
17 end for
18: end for

19: Candidate Selection

20: for each VM j do

21: s[j] < >_; 7[4][j] # total pheromone received

22: end for

23: CandidateSet < top M VMs with highest s[j].

24: GA Phase (on CandidateSet indices 1..M)

25: Initialise population of size P with random genes in [1, M].
26: for gen =1 to G do

27: for each individual g in population do

28: Calculate fitness f(g) = maXBﬁZ&fﬂ;ﬁ;ﬁw[cw”.

29: end for

30: Carry over best individual to next generation (elitism).
31: while new_population.size < P do

32: parentl < tournament_select(population)

33: parent2 < tournament_select(population)

34: (of fspringl,of fspring2) < crossover(parentl, parent2) with probability p.

35: Mutate of fspringl and of fspring2 genes with probability p,, (current genera-
tion).

36: Add offspring to new_population.

37 Dm 4 Pm X 0.99 # decay mutation rate by 1%.

38: end while

39: population < new_population

40: end for

41: Final result

42:

43: return VM corresponding to best individual’s gene (in CandidateSet mapping).

International Journal on Cybernetics & Informatics (1JCI) VVol.14, No.4, August 2025

4 Experimental Setup

The proposed ACO-GA algorithm was implemented within the CloudAnalyst simulator, a
GUI-based extension of CloudSim that models geographically distributed user bases and
data centres. CloudAnalyst was configured to simulate a hybrid cloud environment com-
prising three data centres, each hosting ten virtual machines with predefined specifications
including processing power (MIPS), RAM and bandwidth. Six user bases were defined to
generate cloudlets (tasks), with varying intensity to emulate both light and heavy work-
loads. Specifically, three user bases generated a low request rate (approximately 100 tasks
per second each), while the other three produced a higher load (approximately 500 tasks
each), creating a mixed scenario of peak and off-peak demand.

The evaluation compared four load balancing policies: RR (available by default in
CloudAnalyst), ACO-only, GA-only and the proposed hybrid ACO-GA algorithm. Key
algorithm parameters for the ACO-GA were configured empirically as follows: number of
ants m = 10, ACO iterations Taco = 5, initial pheromone 79 = 1, pheromone evaporation
factor p = 2 and candidate set size M = 5. For the GA phase, we used population size
P = 20, generations G = 50, crossover probability p. = 0.8 and initial mutation probability
pm = 0.1 (which decays by 1% each generation as described). These parameters were
chosen to balance solution quality and runtime overhead; a brief sensitivity test confirmed
that moderate variations did not significantly alter the outcome (extreme values could,
however, degrade performance).

All algorithms were tested under identical conditions to ensure a fair comparison. Each
simulation was run for one hour of simulated time and repeated multiple times to stabilise
the results. Two primary metrics were collected: Overall Response Time - measuring the
total time from request submission to response receipt - and Data Centre Processing
Time, reflecting the VM execution duration. These metrics are computed automatically
by CloudAnalyst. The study focused on response and processing time, as these directly
reflect user experience and system efficiency. Metrics such as throughput, SLA violation
rate and energy consumption were not included but could be considered in future work
for a more thorough evaluation.

The hybrid ACO-GA approach was implemented by extending CloudAnalyst’s load
balancing framework in Java, using its event-driven architecture to integrate the ACO
and GA components. This ensured seamless compatibility with the simulation engine and
allowed controlled, reproducible comparisons with the baseline algorithms.

5 Results and Discussion

Average results are presented across multiple simulation runs. Figure 2 illustrates the
Overall Response Time and Data Center Processing Time for each load balancer, with all
times measured in milliseconds (ms). The ACO-GA approach consistently outperformed
the others in our experiments.

From Figure 2, one can note that the hybrid ACO-GA reduces the response time to
2985 ms (£45 ms), compared to 3278 ms for RR (about 8.9% improvement) and 3092 ms
and 3239 ms for ACO-only and GA-only, respectively. Data centre processing time similarly
drops to 2888 ms with ACO-GA, versus 3117 ms for RR (about 7.3% improvement) and
3011 ms — 3082 ms for the others. These gains indicate that ACO-GA effectively balances
load: by guiding tasks to less loaded VMs through pheromones and selecting globally
optimal assignments, it avoids the hotspots that hurt RR and single heuristics.

The pure ACO-only strategy performs better than RR (3092 ms vs 3278 ms overall
response time) because pheromone trails adaptively steer tasks to VMs with available

35

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

Comparison of Overall Response Time and Data Center
Processing Time Across Algorithms

3278
3300 3239

3092 3082
3011
ACO GA

Algorithm Name

2985

e (Milliseconds)

3117

Round Robin

I 2888

Hybrid (ACO-GA)

H Overall response time (ms) m Data Center processing time (ms)

Fig. 2. Comparison of Overall Response Time and Data Center Processing Time Across Algorithms

capacity, consistent with prior work [4]. The GA-only approach also improves over RR
(3239 ms) by evolving population toward balanced schedules [11]. However, when used
independently, ACO without GA eventually converged to a suboptimal pattern, while
GA-only took more generations to refine solutions. The hybrid ACO-GA avoids these
issues by combining strengths: pheromone updates accelerate convergence and GA prevents
premature stagnation by introducing new solution variants [5].

Performance variability was analyzed alongside statistical significance testing to eval-
uate the consistency and reliability of the proposed load balancing algorithms. Across 10
independent runs, the standard deviation of the overall response time for ACO-GA was
approximately 50 ms, corresponding to roughly 1.7 % of its mean—indicating a high degree
of consistency. In contrast, the RR policy exhibited substantially greater variability (stan-
dard deviation ~ 120 ms), likely due to its inability to adapt to dynamic workloads. The
ACO-only and GA-only approaches showed intermediate variability (standard deviation
in the range of 80 ms to 100 ms).

To assess whether the observed performance improvement of ACO-GA over other meth-
ods was statistically significant, a two-sample t-test was conducted comparing its response
times with those of the next-best method, ACO-only. The hypotheses were defined as
follows:

— Null hypothesis (Hp): There is no significant difference in mean response times
between ACO-GA and ACO-only (MACO—GA = ,U«ACO-only)-

— Alternative hypothesis (H;): ACO-GA achieves a significantly lower mean response
time than ACO-only (uaco-ga < MACO—only)‘

The test was performed at a 95% confidence level, yielding a p-value less than 0.05.
This result supports rejection of the null hypothesis in favor of the alternative, indicating
that the observed performance improvement of ACO-GA is statistically significant and
unlikely to have occurred by chance.

In terms of computational overhead, the ACO-GA algorithm incurs a modest in-
crease in scheduling time compared to the simpler algorithms. In our simulation logs,
each scheduling decision using ACO-GA took roughly 8-10% longer to compute than with
ACO-only, due to the additional GA phase. This overhead is relatively small and was
deemed acceptable given the performance gains. In practice, the algorithm’s two-phase

36

International Journal on Cybernetics & Informatics (1JCI) VVol.14, No.4, August 2025

nature means it performs more work per scheduling interval, but since CloudAnalyst pro-
cesses events sequentially, the impact on overall simulation time was negligible. In a real
system, this would translate to a slightly higher CPU usage on the load balancer node,
but with careful optimisation, and considering that scheduling decisions need not be made
for each individual request in real deployments, the overhead can be kept manageable.

Additionally, ACO-GA was evaluated under different workload intensities to ensure
its effectiveness is robust. Table 1 summarises the average overall response time for each
algorithm in two scenarios. The first represents a light load with a low overall request
volume, while the second reflects a heavy load with a high request volume. As expected,
all algorithms exhibit higher absolute times under heavy load, but ACO-GA maintains
the best performance in both cases. Notably, under heavy load, the gap between ACO-GA
and the others widens, reflecting the algorithm’s ability to adapt to stress by distributing
tasks more efficiently.

Table 1. Average overall response times for various algorithms under light and heavy workload scenarios.

Load Level Round Robin (ms) ACO (ms) GA (ms) ACO-GA (ms)
Light workload 1500 £ 60 1420 £55 1480 £ 50 1300 £ 45

Heavy workload 4000 £ 120 3650 £ 100 3780 £ 110 3400 £+ 80

Table 1 indicates that under light load, RR, ACO and GA all achieve low response
times (in the 1.4-1.5 seconds range) since the system is not stressed. ACO-GA still per-
forms slightly better (~1.3s). Under heavy load, absolute response times increase for all
methods, but ACO-GA’s advantage becomes more pronounced (3.4 s vs 4.0 s in RR, a
~15% reduction). This suggests that ACO-GA scales well as demand increases, effectively
managing high-intensity scenarios by intelligently distributing tasks. The results across
both scenarios reinforce that combining ACO and GA yields consistently superior load
balancing performance.

In simulations, the hybrid algorithm outperforms all standard methods. This advantage
stems from ACQO’s ability to quickly exploit promising allocations and GA’s capacity for
global exploration, which together prevent premature convergence and adapt to workload
changes. Overall, the integration of ACO and GA produces more balanced task distri-
butions and reduces delays even as workload patterns shift. By leveraging pheromone
feedback to guide scheduling and then refining those decisions via evolutionary search, the
system can avoid the pitfalls of each individual approach, such as avoiding both ACO’s po-
tential stagnation and GA’s slow start. The results demonstrate the efficacy of our hybrid
strategy for dynamic cloud environments.

6 Conclusion

This paper presented a custom hybrid load balancing algorithm combining ACO and GA.
Implemented in the CloudAnalyst simulator, the ACO-GA approach was rigorously com-
pared against RR, ACO-only and GA-only policies. Results show that ACO-GA achieves
significantly lower overall response times and data centre processing times. In our tests,
improved response time by about 8.9% over RR and delivered 3.5% and 7.8% better re-
sponse times than ACO-only and GA-only, respectively. These improvements highlight the
efficacy of integrating ACO’s pheromone-guided local optimisation with GA’s evolutionary
global search.

37

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

The methodology has been grounded in existing research, for example, prior studies
have shown the utility of ACO and GA for load balancing [4,11] and hybrid schemes
for scheduling [5, 6]. This work extends these by providing a concrete hybrid algorithm
and empirical evaluation in a realistic cloud simulation environment. However, there are
several limitations to acknowledge. First, the evaluation was carried out in the Cloud Ana-
lyst simulator, which despite its usefulness, abstracts away certain real-world factors. For
instance, network latency is modelled simplistically and the simulator assumes relatively
static conditions within each run. This means the absolute performance numbers might
differ in a real cloud deployment. Additionally, the algorithm’s performance is somewhat
sensitive to its parameter settings, such as the evaporation rate or the mutation rate and
suboptimal parameter choices could lead to slower convergence or less effective load dis-
tribution. This was addressed by empirically tuning parameters, but a more systematic
approach or an adaptive parameter mechanism could further improve robustness.

Future work will focus on exploring multi-objective extensions, such as optimising
cost or energy usage alongside performance and testing in larger, more dynamic cloud
environments. This includes varying the number of data centres and introducing real-
time workload fluctuations, such as sudden spikes, to further challenge the algorithm.
Additionally, implementing the algorithm in a real cloud controller or on a platform like
Kubernetes or OpenStack is a key next step. This would provide an opportunity to assess
the approach in a production-like environment and identify any practical deployment
issues, such as ensuring timely scheduling decisions and integrating with cloud APIs for
VM monitoring and task dispatch. Deployment-oriented experiments will also need to
account for the runtime overhead and reliability of the scheduler in a live system, which
will improve the validity of results beyond simulation. Another promising direction is
extending CloudAnalyst or using CloudSim for continuous re-scheduling, allowing tasks to
be re-balanced during execution to simulate real cloud autoscaling scenarios. Additionally,
there is interest in integrating the approach with machine learning techniques, such as using
a reinforcement learning agent to dynamically adjust ACO-GA parameters or employing
predictive models to anticipate load trends and adjust pheromone values accordingly.
These learning-based enhancements could further increase the adaptiveness of the load
balancer.

Overall, the ACO-GA hybrid demonstrates significant potential as an adaptive load
balancer for future cloud systems. By effectively merging ACQO’s rapid exploitation with
GA’s exploratory capabilities, the approach offers a fresh and efficient solution that en-
hances resource utilisation and user response times. This work highlights how combining
metaheuristic algorithms can result in superior load balancing compared to using either
technique independently, and sets the stage for more intelligent scheduling strategies in
cloud computing.

References

1. T. Sharma and V. K. Banga, “Efficient and enhanced algorithm in cloud computing,” International
Journal of Soft Computing and Engineering (IJSCE), vol. 3, no. 1, 2013.

2. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53, p. 50-58,
Apr. 2010.

3. C. C. Tjeoma, Inyiama, H. C.; A. Samuel, O. M. Okechukwu, and A. D. Chinedu, “Review of hybrid
load balancing algorithms in cloud computing environment,” 2022.

4. K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, Nitin, and R. Rastogi, “Load balancing
of nodes in cloud using ant colony optimization,” in 2012 UKSim 14th International Conference on
Computer Modelling and Simulation, pp. 3-8, 2012.

38

International Journal on Cybernetics & Informatics (1JCI) Vol.14, No.4, August 2025

5. U. K. Lilhore, S. Simaiya, Y. N. Prajapati, A. K. Rai, E. S. Ghith, M. Tlija, T. Lamoudan, and A. A.
Abdelhamid, “A multi-objective approach to load balancing in cloud environments integrating aco and
wwo techniques,” Scientific Reports, vol. 15, Apr. 2025.

6. S. Shrivas, S. Shrivastava, and L. Purohit, A Hybrid Approach Using ACO-GA for Task Scheduling in
Cloud, p. 209-217. Springer Singapore, 2021.

7. J.Zhou, U. K. Lilhore, P. M, T. Hai, S. Simaiya, D. N. A. Jawawi, D. M. Alsekait, S. Ahuja, C. Biamba,
and M. Hamdi, “Comparative analysis of metaheuristic load balancing algorithms for efficient load
balancing in cloud computing,” Journal of Cloud Computing, vol. 12, June 2023.

8. D. A. Shafiq, N. Jhanjhi, and A. Abdullah, “Load balancing techniques in cloud computing environ-
ment: A review,” Journal of King Saud University - Computer and Information Sciences, vol. 34,
p- 3910-3933, July 2022.

9. S. P. Singh, A. Sharma, and R. Kumar, “Analysis of load balancing algorithms using cloud analyst,”
International Journal of Grid and Distributed Computing, vol. 9, p. 11-24, Sept. 2016.

10. C. Blum, “Ant colony optimization: Introduction and recent trends,” Physics of Life Reviews, vol. 2,
p- 353-373, Dec. 2005.

11. K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A genetic algorithm (ga) based load
balancing strategy for cloud computing,” Procedia Technology, vol. 10, p. 340-347, 2013.

12. N. S. Dey and H. K. R. Sangaraju, “Hybrid load balancing strategy for cloud data centers with novel
performance evaluation strategy,” International Journal of Intelligent Systems and Applications in
Engineering, vol. 11, p. 883-908, July 2023.

Authors

Tearlach Magri received a BSc in Software Development from the Malta College of Arts,
Science and Technology (MCAST). Currently, he is pursuing his MSc in ICT (Information
Systems) from the University of Malta. His research interests include cloud computing,
big data and algorithms.

Rebecca Camilleri is a lecturer in the Department of Computer Information Systems
within the Faculty of Information and Communication Technology at the University of
Malta. She holds a PhD in ICT, with her thesis focusing on Data Security in Cloud-Centric
Multi-Tenant Databases. Her research interests include cloud computing, database man-
agement systems, and multi-tenant architectures.

39

	Unified Load Balancing Strategies for Enhanced Cloud Computing Solutions
	Introduction
	Related Work
	Proposed ACO-GA Load Balancing Methodology
	Ant Colony Optimisation Principles
	Genetic Algorithm Principles
	Hybrid ACO-GA Integration

	Experimental Setup
	Results and Discussion
	Conclusion

