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Abstract. Vision Transformers (ViTs) offer strong performance but face high computational costs from
processing all tokens through their full depth. Standard ViTs lack adaptivity. This work introduces Adap-
tive Halting Transformer (AHT-ViT) to enhance efficiency by dynamically adjusting processing depth per
token. AHT-ViT employs hierarchical ”planner” modules predicting token-specific target halting depths
and an extremely parameter-efficient ”supervisor” mechanism (two shared parameters) generating per-layer
halting scores. Tokens halt when their cumulative score crosses a threshold. A novel KL divergence-based
loss, Ltarget depth, explicitly aligns executed halting distributions with planned depths. Evaluation on Ima-
geNet, Places365, and CIFAR-100 using DeiT-S shows AHT-ViT achieves an improved accuracy-efficiency
trade-off compared to its static baseline and demonstrates competitive performance against other adaptive
methods (DynamicViT, A-ViT) evaluated under the same conditions, while significantly reducing FLOPs.
Key hyperparameters were selected via grid search on a validation split.

Keywords: Vision Transformer, Adaptive Computation, Early Exit, Dynamic Depth, Model Efficiency,
Image Classification.

1 Introduction

Vision Transformers (ViTs) [1], achieving state-of-the-art results across diverse computer
vision tasks including classification [2], object detection [22], and segmentation [23], process
images as sequences of tokens using self-attention [3]. However, their standard architecture
employs a static computational graph, processing every token through the full network
depth (L layers). This incurs significant computational overhead [4], independent of the
complexity or importance of different image regions, hindering deployment in resource-
constrained scenarios.

This motivates research into adaptive computation strategies, surveyed in works like
[4,24]. Token pruning or sparsification methods [5,6,25,26] discard or downsample tokens,
saving computation but risking information loss detrimental to dense prediction tasks.
Token merging [19] offers an alternative way to reduce token count. Orthogonally, adaptive
depth processing [7, 8, 18], allows tokens to exit the computation early based on input
characteristics. This preserves all spatial tokens while reducing the average computational
depth, making it suitable for various downstream tasks.

This paper introduces AHT-ViT (Adaptive Halting Transformer), a novel adaptive
depth method featuring a planner-supervisor system. Hierarchical planner modules predict
token-specific target halting depths (N s

target,k) based on evolving features. An extremely
parameter-efficient per-layer supervisor mechanism (using shared γ, β, adding <0.5M pa-
rameters) generates halting scores (hlk). Tokens halt computation when their cumulative
score reaches a threshold T . Our core contribution is the Ltarget depth loss function, which
uses Kullback–Leibler (KL) divergence [9] (a concept also used in models like VAEs [37])
to explicitly align the supervisor’s executed halting patterns with the hierarchical plan-
ner’s predictions. Experiments on standard benchmarks (ImageNet [10], Places365 [15],
CIFAR-100 [16]) show AHT-ViT improves the accuracy-FLOPs trade-off over static base-
lines and performs competitively against other adaptive methods evaluated under identical
conditions.
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2 Related Work

TheN×L computational cost of standard ViTs [1], driven by both self-attention (O(N2D))
and MLPs (O(NLD2)), motivates diverse efficiency improvements. Some approaches mod-
ify the attention mechanism itself (e.g., Linformer [27], Performer [28]) or build hierarchi-
cal structures inspired by CNNs like ResNet [29] or DenseNet [30] (e.g., PVT [31], Swin
Transformer [17], CrossViT [32]). Others focus on dynamic computation.

2.1 Token Sparsification

These methods reduce the effective number of tokens N . DynamicViT [5] uses dedicated
modules to prune less informative tokens hierarchically. SPViT [6] employs soft pruning
based on learnable scores. EViT [25] prunes based on attention scores, while Patch Slim-
ming [26] removes tokens progressively. Token merging [19] fuses similar tokens. While
effective at reducing FLOPs, these methods inherently alter the spatial token set.

2.2 Adaptive Depth

These methods reduce the average computation depth L̄. Early work includes ACT [7]
for RNNs and spatial ACT [8] for CNNs. BranchyNet [18] introduced early exiting classi-
fiers. For Transformers, methods often use confidence scores (e.g., FastBERT [33]) or layer
similarity (e.g., DeeBERT [34]) to trigger exits. A-ViT [11] introduced an efficient per-
token halting mechanism using a shared-parameter (γ, β) supervisor, guided by a global
distributional prior loss (Ldistr) matching the average halting profile to a target. While
parameter-efficient, its global guidance lacks token-specific planning based on evolving hi-
erarchical context. Other related ideas involve learning how many steps to compute, like
PonderNet [20]. Conditional computation via Mixture-of-Experts (MoE) [35, 36] dynami-
cally routes tokens to specialized MLPs but typically doesn’t alter depth.

AHT-ViT builds upon the efficient supervisor structure of A-ViT but replaces the
global prior with hierarchical planners and the Ltarget depth loss for explicit, per-token
planned depth alignment. This distinguishes it from A-ViT’s global guidance and Dynam-
icViT’s pruning. We evaluate these methods under identical conditions in Section 4.

3 Proposed Method: AHT-ViT

3.1 Architecture Overview

AHT-ViT adds planners and supervisors to a ViT backbone (Fig. 2). Planners at stages
S = {S1, . . . } output N s

target,k. Supervisors in each layer l output hlk. Tokens accumulate
scores and halt at layer Nk when the sum reaches T . Ltarget depth aligns Nk distributions
with N s

target,k distributions.

3.2 Hierarchical Planners

Lightweight MLPs inserted after stages S = {3, 6, 9}. Planner Ps uses token k’s features
tsk (processed local features + aggregated global context features) to predict target depth
N s

target,k ∈ [1, L].
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Fig. 1. Example visualizations of AHT-ViT halting behavior. Each panel shows the original image (left)
and the halting visualization (right), where overlaid patches indicate tokens halted early. Note how back-
ground/uniform areas are often halted, while foreground details remain.
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target,k. Tokens halt when cumulative score ≥ T .

Fig. 2. Conceptual overview of AHT-ViT with multiple planner stages (S1, S2, . . . ).

3.3 Per-Layer Supervisors & Halting

Layer l calculates halting score hlk = σ(γ · supervisor featurelk + β) using shared scalars
γ, β. The supervisor featurelk is a single dimension extracted post-FFN-layer1. Cumulative
score C l

k = C l−1
k +hlk (with C0

k = 0). Token k halts at layerNk = min{l | C l
k ≥ T or l = L}.

We use T = 1.0, finding performance robust in preliminary tests for T ∈ [0.9, 1.1]. Halted
tokens are masked in subsequent computations.

3.4 Training Objective

The composite loss is Ltotal = Ltask + λpLponder + λtLtarget depth.

– Task loss Ltask: the usual cross-entropy between the model logits and ground-truth
labels.
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Table 1. Notation used throughout the paper.

k token index (1 ..K)
l layer index (1 .. L)
s planner stage index (s ∈ S)

hl
k halting score for token k in layer l

Ns
target,k planner-predicted exit layer for token k at stage s

Nk actual exit layer chosen for token k by supervisor

– Ponder cost Lponder: the expected computation budget,

Lponder =
1

K

K∑
k=1

Nk, (1)

where Nk is the layer in which token k halts.
– Target-depth alignment Ltarget depth: a KL-divergence that aligns the supervisor’s

actual halting behaviour with the depths proposed by the planners,

Ltarget depth =
1

|S|K
∑
s∈S

K∑
k=1

(
P actual
k

∥∥P target,s
k

)
, (2)

where P actual
k is the discrete probability distribution over layers obtained from the

sequence of halting scores h l
k, representing the probability that token k halts exactly

at layer l. P target,s
k is a discrete Gaussian target distribution over l ∈ {1, . . . , L}:

P target,s
k (l) ∝ exp

[
− (l−Ns

target,k)
2

2σ2
target

]
(3)

with mean N s
target,k (predicted by planner s for token k) and fixed standard deviation

σtarget = 1.

3.5 Implementation Details

AHT-ViT is implemented in PyTorch [12]. Each planner is a two-layer MLP with ReLU
activations, inserted after layers 3, 6, and 9 of the DeiT-S backbone (L = 12); together
they add fewer than 0.5M parameters. The supervisor taps the feature vector after the
first linear sub-layer of every FFN block, using a fixed halting threshold T = 1.0 and
target-distribution width σtarget = 1.0. We fine-tune from the public DeiT-S checkpoint [2]
for 50 epochs on ImageNet with AdamW [13] (initial learning rate 1× 10−4, cosine decay,
weight decay 0.05) and standard data augmentations (e.g., similar to those in [2], including
RandAugment [21]). The loss weights (λp, λt) are chosen by a small grid search on a
held-out validation split to realise the trade-off points reported in Table 2. Conceptual
pseudocode appears in Appendix A.

Table 2. Hyperparameters for AHT-ViT Configurations.

Configuration λp λt

High Accuracy 1× 10−3 1.0
Balanced 5× 10−2 0.5
High Efficiency 1× 10−2 0.2
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Table 3. Performance comparison on ImageNet (DeiT-S backbone).

Model Top-1 Acc (%) Avg GFLOPs Throughput (im/s)†

DeiT-S (Baseline) 79.9 4.6 1570

Evaluated Adaptive Methods:
DynamicViT (ρ=0.7) [5] 79.3 (-0.6) 2.9 (-37%) 2590
A-ViT-S [11] 78.6 (-1.3) 3.6 (-22%) 2096

Our Results:
AHT-ViT (High Acc Config) 79.8 (-0.1) 3.8 (-17%) 1940
AHT-ViT (Balanced Config) 79.4 (-0.5) 3.1 (-33%) 2430
AHT-ViT (High Eff Config) 78.5 (-1.4) 2.4 (-48%) 3159
†Throughput measured on NVIDIA RTX 4090 GPU with batch size 32.

4 Experiments

4.1 Setup

Datasets: ImageNet-1K [10], Places365 [15], CIFAR-100 [16]. Base Model: DeiT-S [2].
Metrics: Top-1 Accuracy, Average GFLOPs per image (calculated based on dynamic ex-
ecution), Throughput (images/second, measured on NVIDIA RTX 4090 GPU, batch size
32).

4.2 Comparative Methods

We compare AHT-ViT against:

– Static Baseline: DeiT-S [2].

– DynamicViT [5]: Token pruning (ρ = 0.7).

– A-ViT [11]: Adaptive depth with global guidance.

All methods use the same DeiT-S backbone and are trained/evaluated under identical
conditions (optimizer, schedule, epochs, augmentation) for fair comparison.

5 Results and Discussion

5.1 ImageNet Performance

Figure 3 and Table 3 show ImageNet results. AHT-ViT consistently improves the accuracy-
efficiency trade-off over the static DeiT-S baseline. The ’Balanced Config’ reduces GFLOPs
by 33% with only a 0.5% accuracy drop, yielding a 1.55x throughput increase. The ’High
Acc Config’ matches baseline accuracy with 17% fewer GFLOPs and 1.24x throughput.

Compared to other adaptive methods evaluated under identical settings, AHT-ViT
performs competitively. It achieves higher accuracy than DynamicViT (ρ = 0.7) at com-
parable efficiency (2.9 vs 3.1 GFLOPs). Notably, the AHT-ViT ’Balanced’ configuration
surpasses A-ViT by +0.8% accuracy while using fewer GFLOPs (3.1 vs 3.6) and achiev-
ing higher throughput (2430 vs 2096 im/s). This suggests the explicit planning mechanism
(Ltarget depth) provides a tangible benefit over global distributional priors for guiding adap-
tive depth in this setup. Throughput gains generally track GFLOPs reductions but are
slightly lower proportionally, likely due to the small overhead of the adaptive halting logic.
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Fig. 3. Accuracy vs. GFLOPs on ImageNet. AHT-ViT (blue) compared to baseline DeiT-S (red) and
our evaluations of DynamicViT (green) and A-ViT-S (orange). Points are annotated with configura-
tion/method.

5.2 Performance on Other Datasets

The AHT-ViT ’Balanced’ configuration, initially trained on ImageNet, was fine-tuned on
Places365 [15] and CIFAR-100 [16]. As shown in Table 4, the model retained its efficiency
advantages (e.g., reduced GFLOPs and improved throughput, comparable to those on
ImageNet) while incurring only moderate accuracy drops compared to the static baseline
(-1.4% on Places365, -0.5% on CIFAR-100). This demonstrates that the learned adaptive
strategy generalizes reasonably well across datasets.

Table 4. AHT-ViT (’Balanced’ ImageNet Config) Performance on Other Datasets vs. DeiT-S Baseline.

Dataset Model Accuracy (%) ∆ Acc (%) Avg GFLOPs ∆ GFLOPs (%) Throughput (im/s)†

Places365
DeiT-S 81.6 - 4.6 - 1570
AHT-ViT 80.2 -1.4 2.8 (-39%) -39% 2579

CIFAR-100
DeiT-S 90.1 - 4.6 - 1570
AHT-ViT 89.6 -0.5 3.7 (-20%) -20% 1952

†Throughput measured on NVIDIA RTX 4090 GPU with batch size 32.

5.3 Ablation Study: Role of Target Depth Guidance

Removing the Ltarget depth loss (λt = 0) and re-tuning λp yielded inferior results (Table 5),
demonstrating lower accuracy and throughput at comparable GFLOPs. This ablation con-
firms the benefit of explicitly guiding the supervisor execution using the planner predictions
via the Ltarget depth loss, compared to relying solely on the Lponder cost penalty.
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Table 5. Ablation study on the Ltarget depth guidance (ImageNet).

Model Variant Top-1 Acc (%) Avg GFLOPs Throughput (im/s)†

AHT-ViT (Full, Balanced Config) 79.4 3.1 2430
AHT-ViT (w/o Ltarget depth) 78.8 3.4 2124
†Throughput measured on NVIDIA RTX 4090 GPU with batch size 32.

5.4 Qualitative Halting Behavior

To provide insight into the learned adaptive behavior, Figure 1 illustrates the halting
process on sample images. Each image displays the original input on the left and the result
after adaptive halting on the right. Patches with the overlay on the right side represent
tokens that were halted early by the supervisor mechanism, reducing computation. It
can be observed that tokens corresponding to simpler or background regions (like the
blurred background in the second example or uniform textures in the first) are often halted
earlier, while tokens representing more complex foreground features (like the cats’ faces
and fur patterns) are processed deeper into the network. This demonstrates meaningful
adaptation to image content. Further visualization studies across diverse images and classes
are valuable future work [14].

6 Conclusion

We presented AHT-ViT, an adaptive halting transformer enhancing ViT efficiency via
a planner-supervisor architecture. Hierarchical planners predict target depths, while a
highly efficient supervisor executes halting, guided by a novel KL divergence-based loss
(Ltarget depth) aligning execution with plans. Experiments on ImageNet, Places365, and
CIFAR-100 demonstrated improved accuracy-FLOPs/throughput trade-offs compared to
static baselines and competitive performance against directly evaluated adaptive methods
(DynamicViT, A-ViT). The explicit planning mechanism appears beneficial over global
guidance or token pruning in our setup.

Key limitations include the need for evaluation on broader tasks (detection, segmen-
tation) and larger models. Further ablation studies on planner configurations, halting
threshold T , and target variance σtarget are warranted. While throughput was measured,
exploring latency on diverse hardware remains important. AHT-ViT provides a promising
approach for efficient ViTs through planned, dynamic computation depth.
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A Conceptual Code

Listing 1.1 shows the conceptual core loop logic referenced in Section 3.5.

Listing 1.1. Conceptual AHT-ViT Core Loop Logic (Appendix).

1 import torch

2 import torch.nn as nn

3 # Assume: self.layers , self.planners , self.planner_stages

4 # Assume: self.gamma , self.beta (shared nn.Parameters)

5 # Assume: self.THRESHOLD defined

6
7 def forward(self , x_tokens): # Inside AHT_ViT class

8 B, N, _ = x_tokens.shape

9 cum_scores = torch.zeros(B, N, device=x_tokens.device)

10 active_mask = torch.ones(B, N, dtype=torch.bool , ...)

11 plan_targets = {} # Store planner outputs

12
13 current_tokens = x_tokens

14 for l in range(1, self.L + 1):

15 # 1. Process layer (returns output & supervisor features)

16 # Layer must handle masking or expect masked input

17 out_tokens , supervisor_features = self.layers[l-1](

18 current_tokens , attention_mask=active_mask ) # Pass mask

19 # 2. Supervisor: Calc halting score h_l for active tokens

20 # supervisor_features assumed shape [B, N, FeatureDim]

21 selected_feature = supervisor_features [..., 0] # Use first dim

22 h_scores_l = torch.sigmoid(

23 self.gamma * selected_feature + self.beta

24 ) * active_mask.float() # Score is 0 if already halted

25 # 3. Accumulate score & update active_mask for next layer

26 cum_scores += h_scores_l

27 active_mask_next = (cum_scores < self.THRESHOLD)

28 # 4. Planner: Predict target if stage

29 if l in self.planner_stages:

30 # Planner might need masking internally too

31 plan_targets[l] = self.planners[str(l)]( out_tokens) * \

32 active_mask.float () # Mask output for

halted tokens

33
34 active_mask = active_mask_next # Update mask for next iteration

35 current_tokens = out_tokens
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