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ABSTRACT 

 

This paper explores AI-assisted peripheral management techniques that improve traditional input methods 

through modular and linear layouts combined with voice-based support. Modular and linear approaches 

let users construct macros with temporal logic, enabling faster setup and more intuitive execution. Voice 

models extend accessibility by allowing disabled users to configure and later trigger complex key 

combinations through simplified inputs.  

 

Two experiments evaluated these methods: one compared modular/linear layouts with free-design in terms 

of setup time, consistency, accuracy, and satisfaction; the other tested AI-optimized layouts with gaze 

heatmaps. Results show faster setup, fewer errors, and improved accessibility. 
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1. INTRODUCTION 
 

Gaming has become a central form of modern entertainment and social interaction. 1 in 4 U.S. 

adults live with a disability [1], highlighting the need to ensure that gaming experiences are 

inclusive and accessible to a large portion of the population. Organizations that develop assistive 

technologies have often overlooked the role of gaming, even though it can be as vital to 

participation and quality of life as mobility aids or communication devices. 

 

Despite this increased interest, a significant number of people encounter barriers when playing 

games due to a disability. [2] Nowadays, Human-Computer Interaction (HCI) systems, e.g., 

keyboard, mouse, and touch screen, are frequently used by everyone. However, those ways to 

interact with computers may not be suitable for disabled persons [3]. Traditional keybinding 

systems make configuring and executing macros unnecessarily complex. Users often depend on 

repetitive trial-and-error to define combination keys, which increases setup time, cognitive load, 

and the likelihood of errors. [4] For users with physical disabilities, performing multiple key 

presses at the same time is often not feasible, restricting interaction to single movements and 

limiting overall functionality. 

 

Although a range of adaptive hardware exists to support disabled players—such as eye-tracking 

tools (Project Iris, Mill Mouse), facial-expression software (Gameface, KinesicMouse Live), 

mouth-operated controllers, adaptive controller, for example like Microsoft’s Xbox Adaptive 
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Controller and Sony’s Access Controller[5], screen-magnification tools, and voice-control 

systems—significant gaps remain. These technologies demonstrate promising ways to make 

digital interaction more inclusive, but in practice, they are often expensive, difficult to obtain, or 

tied to specific platforms. Even when available, their setup and calibration can be complex and 

time-consuming, requiring technical knowledge that not all users possess. As a result, adoption is 

limited, and many players are left without practical or sustainable accessibility solutions. 

 

At the same time, existing keyboard systems fall short of meeting both mainstream and 

accessibility needs. Macros and combination keys play a critical role in modern human-computer 

interaction, particularly in gaming and professional applications that require rapid, multi-step 

operations. However, traditional keybinding systems make macros difficult to configure, often 

requiring users to manually define complex sequences through trial-and-error. This process not 

only increases setup time but also places a heavy cognitive burden on users, leading to 

inconsistency and frequent errors during use. 

 

The problem becomes even more significant for individuals with physical disabilities. Many 

disabled users struggle to press multiple keys simultaneously, making it extremely difficult to 

perform actions such as eight-directional movement in games. In most cases, they are limited to 

moving in a single direction at a time, which severely restricts their ability to participate in fast-

paced, multi-input tasks. The lack of adaptive and accessible input solutions highlights a critical 

gap in current peripheral management systems. 

 

Recent developments in artificial intelligence (AI) and modular input design offer new 

opportunities to address these challenges. Instead of operating as an independent tool, AI can 

serve as a ‘copilot,’ helping users manage visually intensive or multi-step tasks by easing the 

demand for continuous manual input.As Laurence Moroney, AI advocacy lead at Google and one 

of the minds behind Gameface, explains: “AI is a concept. Machine learning is a technique you 

use to implement that concept.” [6] This distinction highlights how practical techniques such as 

machine learning can be applied to optimize input layouts, predict user intent, and provide 

adaptive support that makes interaction both more efficient and more inclusive. 

 

Modular and linear layouts allow macros and combination keys to be defined with temporal logic, 

simplifying the setup process and making complex inputs easier to execute. At the same time, 

voice-based AI models provide disabled users with the ability to trigger multiple key 

combinations through speech, enabling more inclusive interaction and removing barriers to multi-

directional movement. Much like how intrusion detection systems in the Internet of Things (IoT) 

often rely on machine learning models trained on datasets like CICIDS-2017, KDD-99, and 

TON-IoT, our modular and AI-driven input designs similarly benefit from structured, measurable 

configurations. [17] 

 

Through controlled experiments in gaming contexts, including performance evaluation on tasks 

like movement, item usage, and skill activation, the research investigates whether AI-driven 

layouts and multi-modal input can reduce setup difficulty, enhance efficiency, and expand 

accessibility for both general users and disabled participants. 

 

2. RELATED WORK 
 

Several existing studies have explored assistive technologies and input optimization for human-

computer interaction. Table 1 summarizes representative works and highlights how the proposed 

research differentiates itself. 
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Table 1. Comparison of Related Work and Proposed Research 

 
Study / Reference Domain & 

Focus 

Methodology Limitations Distinction from 

This Work 

Microsoft Xbox 

Adaptive 

Controller; Sony 

Access Controller 

Gaming 

accessibility 

hardware for 

users with 

physical 

impairments 

Specialized 

adaptive 

hardware devices 

with customizable 

buttons and inputs 

High cost, limited 

platform 

compatibility, 

complex setup 

This work provides 

AI-driven software-

level adaptability and 

modular layouts, 

reducing reliance on 

expensive hardware. 

Project Iris, Mill 

Mouse (eye-

tracking), 

Gameface, 

KinesicMouse Live 

(facial-expression 

input) 

Alternative 

input modalities 

for disabled 

users 

Eye-tracking and 

facial-expression 

recognition for 

controlling games 

Often platform-

specific, require 

complex 

calibration, 

limited to certain 

interaction types 

This work integrates 

multi-modal AI input 

(including voice and 

modular layouts) into 

mainstream peripheral 

management, enabling 

broader usability. 

Screen 

magnification tools, 

voice-control 

systems 

Accessibility 

tools for general 

computer use 

Visual or speech-

based interaction 

aids 

Lack of 

integration with 

gaming or 

advanced multi-

key operations 

This work combines 

assistive modalities 

with AI-optimized 

layouts, addressing 

both gaming and 

professional multi-

input tasks. 

 

In summary, prior work has made significant progress in developing specialized hardware and 

exploring machine learning applications for accessibility and network optimization. However, 

these approaches often remain domain-specific, costly, or limited in adaptability. The proposed 

research distinguishes itself by unifying AI-driven layout optimization and multi-modal assistive 

input into a cross-device, web-based peripheral management platform, aiming to reduce learning 

burden, enhance efficiency, and broaden accessibility for both mainstream and disabled users. 

 

3. CHALLENGE 
 

The experimental challenges addressed in this study focus on the following aspects. 

 

Challenge 1: Real-Time Performance Gap in Accessibility Tools 

 

Existing assistive technologies (adaptive controllers, single-switch systems, key remapping) 

enable basic input for users with upper-limb disabilities, but they fail to deliver low-latency, 

simultaneous multi-key input required by FPS games. [7] This limitation directly impacts 

reaction speed, competitive viability, and user experience in fast-paced gaming environments. 

 

Challenge 2: High Setup Complexity and Learning Burden 

 

While some gamers develop personalized configurations that suit their needs, creating these 

setups requires extensive trial-and-error, hours of adjustment, and complex memorization of 

custom bindings. [8] This complexity not only discourages new users but also limits adaptability 

across different games and platforms. 
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Challenge 3:  Lack of Cross-Platform Consistency and Adaptive Frameworks 

 

Accessibility solutions are typically platform-specific and static, lacking adaptive algorithms that 

adjust input dynamically to user needs and game play requirements. The absence of unified, 

cross-platform frameworks forces users to start from scratch on each new game, reducing 

usability, consistency, and long-term accessibility. 

 

How do AI tools increase BLV users’ independence, aiding in creative, professional, and daily 

activities? 

 

4. SOLUTION 
 

To address these challenges, the study designed the following experimental solutions: 

 

4.1. Modular and Linear  
 

To address the accessibility challenges faced by upper-limb-disabled gamers in FPS games, a 

modular and linear input approach (Fig. 1 and 2) offers a practical solution. Unlike free-design 

methods, where users must manually assign every key or input—often resulting in long setup 

times, high error rates, and a steep learning curve—modular layouts use predefined building 

blocks or linear sequences for actions such as movement, aiming, and shooting, and additionally 

support assigning temporal dimensions(Table.1) to macros (e.g., “hold until the next command 

terminates” or “single quick trigger”). [9] This structure enables users to quickly configure their 

controllers, reduces cognitive load, and ensures cross-platform consistency, allowing setups to be 

easily reused across different games. Importantly, this approach is intuitive for users without 

technical backgrounds, as they can understand and arrange modules through a simple interface 

(e.g., Scratch or mBlock), combining physical inputs and voice commands without needing 

programming expertise. This approach not only benefits disabled users but also improves 

usability for all users. 

 

In Figure 1, the framework of input definition is illustrated. It consists of three core 

dimensions: time dimension, key position, and duration per key definition. Through this structure, 

users can specify whether an input is “press once to release” or “hold until the next command 

terminates,” combine multiple keys into macro commands, and further set the execution duration. 

This modular definition also supports nesting and extending macros, ensuring flexibility across 

different scenarios while maintaining cross-platform consistency. 

 

In Figure 2, the workflow of key binding creation is shown. The process begins with naming the 

macro, followed by selecting a time dimension, assigning a specific key, setting the duration, and 

then either inputting the next key or nesting an existing macro. The sequence continues until the 

macro is saved, bound to a virtual key position, and positioned within the overall layout and layer 

management. This linear workflow allows users to complete complex configurations in a step-by-

step manner, reducing the learning curve and error rate while providing a more intuitive setup 

experience for players with limited mobility. 
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Table 2. Time Dimension example 

 

 
 

Figure 1.Framework of Input Definition 
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Figure 2.Workflow of key binding creation 

 

4.2. Adaptive AI Layout Generation 
 

The integration of AI agents in gaming has been explored through multiple approaches, 

particularly with the rise of large language models (LLMs) [10]. In this study, we apply AI to 

automatically generate optimized key layouts based on baseline usage data and three 

overarching categories of interaction patterns. 

 

The first category is temporal patterns, which capture the timing and order of user actions. These 

include sequential flows that typically occur during gameplay, such as moving, aiming, firing, 

and reloading in succession. They also include rhythmic intervals, for example, the tendency to 

heal after extended combat or reload immediately following a burst of firing. Temporal patterns 

additionally highlight common error-recovery behaviors, such as repeated mis-presses or 

confusion between adjacent actions, which can guide the AI to design more robust layouts. 

 

The second category is frequency and priority patterns, which describe how often and how 

critically inputs are used. High-frequency actions, such as movement or firing, must be placed in 

the most accessible positions, whereas lower-frequency actions, such as chatting or taking 

screenshots, can be relegated to peripheral zones. Priority is also determined by tactical 

importance: survival-critical or time-sensitive actions are emphasized in central or dominant 

positions, while less urgent operations are assigned lower prominence. In addition, frequently 

combined actions, such as “jump and shoot” or “crouch and reload,” are recognized as co-

occurring pairs or chains, encouraging the AI to group them closely together to improve fluidity. 

 

The third category is spatial and structural patterns, which concern the ergonomic and 

contextual relationships between keys. This involves minimizing hand displacement by placing 

related functions adjacent to one another, adapting layouts to account for left- or right-hand 

dominance, and dynamically shifting configurations depending on gameplay context, such as 

differentiating between exploration and combat phases. These spatial considerations ensure that 

the layout is not only efficient but also comfortable and adaptable across varied play scenarios. 

 

By learning across these three categories of patterns, the system aims to reduce reaction time, 

minimize the cognitive load of searching for the next input, and improve overall control. For 

complex action role-playing games (ARPGs), the AI adapts layouts using both collected 

interaction data and user-defined macros, effectively functioning as an assistive game agent. 
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Performance will be evaluated using gaze heatmaps to assess improvements in task completion 

time, keystroke intervals, gaze concentration, error rate, and user perception (Fig. 3). 

 

 
 

Figure 3. Layout 

 
According to Kara Pernice’s article in the Nielsen Norman Group, eye-tracking research shows 

that users often scan visual information in an F-shaped pattern—reading first across the top, then 

a shorter line below, before moving vertically down the left side of the layout[11]. This pattern 

suggests that the upper and left regions of an interface receive the most visual attention. For input 

design, placing commonly used keys or macros in these high-attention zones can make them 

quicker to find and easier to reach. Similarly, grouping frequently combined actions in proximity 

can reduce search time and improve fluidity during fast-paced tasks. 

 

 
 

Figure 4. F-shaped heatmap 

 

4.3. Voice AI Assistance for Accessibility  
 

Speech recognition can serve as an effective alternative input method, particularly for users who 

struggle with pressing multiple keys at once. By allowing multi-step actions to be carried out 

through simple spoken commands, voice input reduces physical barriers and enhances 

accessibility for disabled users, while offering flexible interaction benefits to all players.Unlike 

general-purpose GUI agents, which often fail to meet the speed demands of real-time gaming, 

modern speech technologies offer faster and more reliable interaction. Robust APIs such as 

Google Cloud Speech-to-Text, IBM Watson, and Microsoft Azure [12] provide accurate, low-
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latency recognition that can be mapped directly to macros and combination keys. This solution 

evaluates its feasibility in executing combination keys and macros and exploring its role in 

enabling inclusive multi-modal interaction.  

 

Together, these experimental solutions aim to reduce cognitive load, enhance efficiency, and 

extend accessibility in peripheral device management. 

 

 
 

Figure 5. Voice input 

 

5. EXPERIMENTAL DESIGN 
 

To evaluate the effectiveness and user value of the proposed AI-driven platform, we conducted 

two complementary experiments: 

 

5.1. Experimental Game Context 
 

To ensure sufficient complexity and ecological validity of the keybinding setup and usage tasks, 

this study employed CrossFire, a popular first-person shooter (FPS) game, as the experimental 

platform. CrossFire requires players to perform a wide range of operations under time pressure, 

including basic actions such as movement, jumping, shooting, and reloading; tactical actions such 

as weapon switching, grenade throwing, and opening the map; as well as functional actions such 

as chatting, taking screenshots, and using quick items. These operations are highly dependent on 

shortcut and combination key inputs, making CrossFire an ideal platform for evaluating the 

effectiveness of different key binding methods in terms of setup efficiency, usage efficiency, and 

accuracy. 

 

5.2. Experiment 1: Comparison of Keybinding Methods 
 

This experiment was designed to compare the effectiveness of two different keybinding methods. 

In the experimental group, participants created keybindings using a linear and modular method 

provided by the researchers, whereas in the control group, participants freely created their own 

keybindings without restrictions. A within-subject design was adopted, requiring each participant 
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to complete tasks under both conditions. To minimize potential learning effects, the order of the 

two conditions was randomized. 

 

5.2.1. Participants 

 

A total of 12 participants (mean age = 24.3 years; 7 males, 5 females), all with prior gaming 

experience, were recruited. 

 

5.2.2. Tasks 

 

The experimental tasks consisted of three parts: 

 

Part 1: Keybinding Setup Task 

 

Participants were presented with a fixed list of 10 essential FPS functions and were asked to 

assign a keybinding to each function. These functions represent the core interactions in FPS 

gameplay, ensuring coverage of both basic movement and combat/tactical operations: 

 

1. Move forward 

2. Move backward 

3. Move left (strafe) 

4. Move right (strafe) 

5. Jump 

6. Crouch 

7. Attack (fire weapon) 

8. Reload 

9. Switch weapon / item 

10. Open map 

 

These functions were selected because they represent the most fundamental and frequently used 

actions in FPS games, covering basic movement, combat operations, and tactical controls. 

Together, they reflect the core interaction set that determines survival, efficiency, and strategy in 

gameplay. Many of these actions also occur in rapid succession or as combinations (e.g., move + 

attack, jump + shoot, switch weapon + fire), making them ideal for testing the effectiveness of 

different keybinding methods in reducing setup time, lowering cognitive load, and improving 

consistency. In addition, these high-frequency actions are particularly challenging for players 

with limited mobility, which further highlights the relevance of evaluating accessibility-oriented 

solutions. The total time (in minutes) required for participants to complete all 10 bindings was 

recorded as a measure of setup efficiency. 

 

Part 2: Keybinding Usage Task 

 

The system randomly prompted a function (e.g., “open map”), and participants were required to 

input the corresponding keybinding. Each participant performed 30 trials per condition, covering 

all functions in random order. Reaction time (in seconds) and accuracy (in percentage) were 

recorded. 

 

Part 3: Subjective Evaluation 

 

Participants completed a 5-point semantic differential scale to assess their perceptions of the 

layouts, including ease of use, comfort, and satisfaction. 
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5.2.3. Metrics and Expected Values 

 

Setup Efficiency 

 

• Control group: average setup time ≈ 5 minutes 

• Experimental group: expected reduced setup time ≤ 3 minutes 

 

Consistency of Keybinding 

 

• The experimental group is expected to show more consistent mappings (e.g., >70% 

choose M or Ctrl+M for “map”), while the control group results are expected to be 

more scattered. 

Accuracy 

 

• Control group: ≈ 50% success rate 

• Experimental group: expected improvement to ≥70% 

 

Subjective Evaluation 

 

• Control group: mean satisfaction score ≈ 3.2/5 

• Experimental group: expected improvement to 4.2/5 

 

5.2.4. Procedure 

 

During the experiment, researchers first introduced the purpose and instructions of the study to all 

participants. Participants were then randomly assigned to begin with either the experimental 

condition or the control condition. Within each condition, participants completed three steps: a 

keybinding setup task involving 10 functions, a usage task consisting of 30 randomized trials, and 

a subjective evaluation questionnaire. After completing one condition, participants repeated the 

same procedure in the other condition. Finally, the researchers collected all data and conducted 

statistical analyses focusing on setup time, usage efficiency, accuracy, consistency, and 

subjective ratings. 

 

5.3. Experiment 2: Evaluation of Layout Optimization 
 

The second experiment was designed to evaluate whether an AI-optimized keybinding layout 

could improve user performance and experience compared to self-created layouts. Traditional 

keybinding setups often result in scattered gaze patterns and inefficient keystroke usage, 

especially in fast-paced gaming scenarios. By leveraging gaze-tracking data and key usage 

patterns captured through GazeRecorder, the AI system generated optimized layouts intended to 

reduce keystroke count, shorten key intervals, and improve gaze concentration. 

 

The primary objective of this experiment was to determine the extent to which AI-driven layout 

optimization enhances task efficiency and subjective usability. Specifically, the study sought to 

compare baseline user-created layouts with AI-generated layouts across multiple dimensions, 

including task completion time, keystroke efficiency, gaze distribution, and user perception. 

 

5.3.1. Participants 

 

A total of 12–15 participants, all with prior gaming experience, were recruited to complete the 

experimental gaming tasks. 
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5.3.2. Experimental Conditions 

 

A within-subject design was employed, with each participant exposed to two layout conditions: 

 

• Baseline Layout: Participants created and used their own custom keybinding layouts. 

• AI Layout: An optimized layout was generated by an AI model based on data collected 

during the Baseline condition. The optimization incorporated gaze heatmaps and key 

usage patterns captured through GazeRecorder. 

 

Each participant completed the same set of game tasks under both conditions. The order of 

conditions was randomized to mitigate potential learning or fatigue effects. 

 

5.4. Introduction to GazeRecorder 
 

GazeRecorder is a camera-based eye-tracking and gaze analysis software that enables the capture 

and visualization of eye movement data without requiring specialized hardware. In a comparative 

evaluation, GazeRecorder was highlighted as the most accurate among webcam‑based gaze 

tracking tools. [13] Using a standard webcam, it records users’ eye movements, fixation points, 

and gaze distribution, and generates corresponding heatmaps and analytical reports. Compared to 

traditional head-mounted eye-tracking devices, GazeRecorder offers advantages such as easy 

deployment, lower cost, and strong adaptability, making it well-suited for rapid experimental 

validation and user research across various scenarios. 

 

In this experiment, GazeRecorder was employed to record participants’ gaze distribution and 

concentration under different keybinding layouts. Heatmap analysis was then used to support the 

evaluation of AI-optimized layouts. This approach not only reduces dependency on specialized 

hardware but also provides greater flexibility for conducting experiments in diverse settings. 

 

5.4.1. Experimental Task 

 

The experimental task required participants to complete a series of game operations (e.g., skill 

activation, item usage) within a fixed 10-minute period. Task content was kept identical across 

both conditions to ensure comparability of performance metrics. 

 

5.4.2. Data Collection and Metrics 

 

To maintain clarity and simplicity in evaluation, five key metrics were defined: 

 

● Completion Time: The total time required to complete the task, or alternatively, the 

number of tasks completed within the 10-minute timeframe. For example, participants 

completed an average of 8 tasks under the Baseline layout, while the AI layout was 

expected to increase this to approximately 10 tasks. 

● Keystroke Count: The total number of keystrokes required to complete the task. In the 

Baseline condition, participants averaged around 120 keystrokes, whereas the AI layout 

aimed to reduce this number to 100 or fewer. 

● Key Interval: The average interval (in seconds) between consecutive uses of the most 

frequently pressed keys. The Baseline condition averaged 1.5 seconds, while the AI 

layout was expected to reduce this to around 1.0 seconds. 

● Gaze Concentration: Measured using GazeRecorder heatmaps to assess whether 

participants’ visual attention was more concentrated. In the Baseline layout, gaze 

hotspots covered approximately 70% of the keyboard area, whereas in the AI layou,t this 

was expected to reduce to 40% or less. 

https://gazerecorder.com/
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● Subjective Ratings: After completing the tasks, participants provided subjective ratings 

on a 1–5 semantic differential scale. For example, in terms of ease of use, the Baseline 

layout averaged around 3 points, while the AI layout was expected to improve this score 

to 4 or higher. 

 

5.4.3. Procedure 

 

At the beginning of the experiment, participants received a brief introduction to the study 

objectives and a short training session to become familiar with the experimental setup and the 

GazeRecorder system. Following this preparation, they were randomly assigned to start with 

either the Baseline layout or the AI layout. Each task session lasted for 10 minutes, during which 

both keystroke events and gaze data were continuously recorded through GazeRecorder. To 

minimize calibration drift that might occur due to differences in participants’ seating position or 

height, all participants were instructed to use a laptop while seated at an adjustable desk set to a 

consistent height. After completing the first condition, participants immediately proceeded to the 

second layout condition and repeated the same task under identical time constraints. Upon 

finishing both sessions, participants completed a subjective evaluation questionnaire to provide 

ratings on ease of use and overall experience. Finally, the collected data were analyzed across 

five key dimensions: completion time, keystroke efficiency, key interval accuracy, gaze 

concentration, and subjective perception, in order to compare the effectiveness of the Baseline 

and AI layouts. 

 

6. RESULTS 
 

6.1. Experiment 1: Comparison of Keybinding Methods 
 

In Experiment 2, twelve participants performed keybinding setup and usage tasks using both the 

linear and modular methods and the free-design method. 

 

Setup Efficiency: In the free-design condition, participants took an average of 5.2 minutes (SD = 

0.9) to complete the setup of 10 functions, compared to 2.8 minutes (SD = 0.7) with the modular 

method. The difference was significant (t(11) = 6.02, p < .001). Participants commented that the 

modular method “provided a clear logic and reduced trial-and-error.” 

 

Consistency of Keybindings: For the “open map” function, 72% of participants in the modular 

condition chose M or Ctrl+M, while only 35% did so in the free-design condition, indicating 

higher cross-user consistency with the modular approach. 

 

Usage Efficiency: During the usage phase, average reaction time was 0.98 seconds (SD = 0.18) 

with the modular method and 1.47 seconds (SD = 0.26) with the free-design method. The 

difference was significant (t(11) = 5.89, p < .001), showing faster responses with the modular 

method. 

 

Accuracy: The modular condition achieved an average accuracy of 92% (SD = 4.5), compared to 

81% (SD = 5.8) in the free-design condition. The difference was significant (t(11) = 4.36, p 

< .01), suggesting that the modular method reduced input errors. 

 

Subjective Ratings: Based on the semantic differential scale (1–5), the free-design condition 

received relatively lower scores across most dimensions, ranging from 2.4 to 3.6. For example, it 

scored particularly low in Well-organized–Messy (2.4 ± 0.7) and Precise–Error-prone (2.4 ± 0.5), 

indicating issues of inconsistency and inaccuracy. In contrast, the modular condition showed 
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consistently higher ratings, with values ranging from 3.6 to 4.6. Notably, it achieved strong 

improvements in Well-organized–Messy (4.6 ± 0.6), Reliable–Unreliable (4.4 ± 0.5), and 

Controlled–Randomized (4.4 ± 0.5), reflecting greater clarity, reliability, and stability. 

 
Table 3. Experience 1 Subjective rating 

 
Dimension Free-design (M ± SD) Modular (M ± SD) 

Clear–Cluttered 3.5 ± 0.7 4.0 ± 0.6 

Well-organized–Messy 2.4 ± 0.7 4.6 ± 0.6 

Consistent–Random 2.4 ± 0.5 4.0 ± 0.7 

Easy to remember–Hard to remember 3.3 ± 0.6 4.4 ± 0.5 

Intuitive–Confusing 3.1 ± 0.7 3.6 ± 0.6 

Familiar–Unfamiliar 3.5 ± 0.8 3.9 ± 0.7 

Efficient–Cumbersome 3.5 ± 0.6 3.7 ± 0.4 

Quick setup–Time-consuming 2.5 ± 0.7 4.3 ± 0.7 

Smooth–Interruptive 2.8 ± 0.6 3.9 ± 0.5 

Precise–Error-prone 2.4 ± 0.5 4.0 ± 0.6 

Reliable–Unreliable 2.9 ± 0.7 4.4 ± 0.5 

Controlled–Randomized 3.6 ± 0.6 4.4 ± 0.5 

Satisfactory–Unsatisfactory 3.4 ± 0.5 3.7 ± 0.4 

Comfortable–Uncomfortable 3.5 ± 0.7 4.2 ± 0.6 

Helpful–Useless 3.0 ± 0.5 4.1 ± 0.4 

 

The findings of this experiment provide clear evidence that the proposed linear/modular 

keybinding method is more effective than the traditional free-design approach. Specifically, 

participants using the modular method required significantly less time to complete the setup of 

keybindings, demonstrating a more efficient and streamlined process. 

 

In terms of actual task performance, participants in the modular condition responded more 

quickly and with fewer errors, indicating that the structured design reduced cognitive load and 

improved overall usability. Accuracy rates were notably higher, showing that users could reliably 

recall and execute the correct bindings under time pressure. 

 

6.2. Experiment 2: Evaluation of Layout Optimization 
 

In Experiment 1, twelve participants completed identical 10-minute game tasks under both the 

Baseline layout and the AI-generated layout. 

 

Task Completion: Participants completed an average of 8.1 tasks (SD = 1.2) in the Baseline 

condition, compared to 10.3 tasks (SD = 1.0) in the AI condition. A paired-samples t-test 

confirmed that the difference was significant (t(11) = 4.52, p < .01), indicating that the AI layout 

significantly improved task completion efficiency. 

 

Keystroke Count: The Baseline condition required an average of 121 keystrokes (SD = 14.5), 

whereas the AI layout reduced this to 97 keystrokes (SD = 12.3). The difference was significant 

(t(11) = 3.98, p < .01), suggesting that the AI layout reduced redundant actions. 

 

Key Interval: The average interval between consecutive uses of frequently pressed keys was 

1.48 seconds (SD = 0.25) in the Baseline layout, compared to 0.98 seconds (SD = 0.20) in the AI 
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layout. The difference was significant (t(11) = 5.21, p < .001), demonstrating improved 

operational efficiency. 

 

Gaze Concentration: Heatmap analysis from GazeRecorder indicated that participants’ gaze 

hotspots covered approximately 61% (Fig. 6) of the keyboard area under the Baseline layout, 

compared to only 38% (Fig. 7) under the AI layout. This reduction suggests that the AI layout 

effectively concentrated users’ visual attention within central functional zones, thereby 

minimizing long-distance saccades and improving attentional focus. Participants also reported 

that the AI layout allowed them to “focus more on the essential keys” and reduced unnecessary 

visual scanning across the keyboard. 

 

 
 

Fig 6. GazeRecorder concentration – Before 

 

 
 

Fig 7. GazeRecorder concentration - After 

 

Subjective Ratings: Based on the semantic differential scales, the Baseline layout received 

relatively low scores across multiple dimensions, with averages ranging between 2.1 and 3.8. The 

weakest results appeared in Well-guided–Messy (2.3 ± 0.7) and Precise–Error-prone (2.4 ± 0.6), 

suggesting that participants often felt the layout lacked structure and accuracy. Other measures, 

such as Ease of Use (3.2 ± 0.6) and Comfortable–Straining (3.3 ± 0.7,) also reflected limited 

usability and comfort. 
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In contrast, the AI layout achieved consistently higher ratings, with averages ranging between 3.9 

and 4.5. Significant improvements were observed in Efficiency (4.5 ± 0.5), Accuracy (4.4 ± 0.5), 

and Reliability (4.3 ± 0.6), indicating that participants experienced faster and more dependable 

task performance. Gains were also evident in experiential dimensions such as Intuitive–Confusing 

(4.3 ± 0.5), Relaxed–Tense (4.4 ± 0.5), and Helpful–Useless (4.2 ± 0.5), which reflected smoother 

interactions and greater user confidence. 

 
Table 4. Experience 2 Subjective rating 

 

 
Dimension Baseline (M ± SD) AI Layout (M ± SD) 

Fast–Slow 3.4 ± 0.7 3.8 ± 0.6 

Efficient–Inefficient 2.3 ± 0.7 4.5 ± 0.6 

Smooth–Interruptive 2.3 ± 0.5 3.8 ± 0.7 

Accurate–Error-prone 3.2 ± 0.6 4.3 ± 0.5 

Easy to use–Hard to use 3.0 ± 0.7 3.4 ± 0.6 

Well-guided–Messy 3.4 ± 0.8 3.7 ± 0.7 

Comfortable–Straining 3.4 ± 0.6 3.5 ± 0.4 

Intuitive–Confusing 2.4 ± 0.7 4.1 ± 0.7 

Focused–Distracted 2.7 ± 0.6 3.7 ± 0.5 

Clear view–Overwhelming 2.3 ± 0.5 3.9 ± 0.6 

Low effort–High effort 2.8 ± 0.7 4.3 ± 0.5 

Relaxed–Tense 3.5 ± 0.6 4.3 ± 0.5 

Enjoyable–Frustrating 3.3 ± 0.5 3.5 ± 0.4 

Helpful–Useless 3.4 ± 0.7 4.1 ± 0.6 

Satisfying–Dissatisfying 2.9 ± 0.5 4.0 ± 0.4 

Preferred–Avoided 3.2 ± 0.6 3.9 ± 0.6 

 

7. DISCUSSION 
 

The results of both experiments demonstrated that AI-optimized layouts and modular input 

methods significantly enhanced user performance. Participants frequently highlighted the role of 

the time dimension in the modular method, such as “holding until the next command terminates” 

or “single quick trigger.” This allowed them to assign functions by simply conceptualizing their 

temporal behavior rather than through repeated trial-and-error. Meanwhile, the AI-optimized 

layout made keys easier to locate and more intuitive, which reduced search time and hesitation. 

Both methods also contributed to a reduction in errors. In the baseline or free-design conditions, 

participants often forgot which keys they had just pressed, leading to mistakes, whereas in the 

optimized conditions, such errors were noticeably reduced. This indicates that structured and 

systematic layouts can effectively relieve memory load and reduce operational mistakes. 

 

Nonetheless, the study also revealed several limitations. Some participants experienced initial 

discomfort when first encountering the new layout, reporting difficulties such as not knowing the 

positions of certain keys or requiring multiple attempts to memorize them. Over time, however, 

this discomfort diminished, suggesting that new habits could be formed relatively quickly. The 

concern arises if the AI system were to frequently update layouts: users might face this 

“relearning cost” repeatedly, which could undermine long-term usability. Therefore, future 
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design should aim to balance dynamic optimization with layout stability, for example by 

introducing a progressive update mechanism or allowing users to lock certain key positions. This 

would preserve flexibility while minimizing the burden of frequent adaptation.In addition, 

extending this approach to broader application domains and investigating adaptive learning 

mechanisms could provide valuable directions for future research. 

 

8. LIMITATIONS 
 

Although this approach demonstrates innovation in peripheral management, several limitations 

remain. First, this approach relies heavily on network connectivity and cloud synchronization. In 

low-bandwidth or offline environments, its real-time performance and stability may be 

compromised, limiting its applicability in more complex scenarios. [14] Drawing a parallel from 

RIS-aided wireless communication—where energy efficiency and signal optimization are 

crucial—modular input abstractions must also remain robust under network variability and 

system constraints. As seen in VoIP performance studies over wireless networks, where packet 

loss and jitter significantly affect user experience [18], the platform may face similar stability 

challenges in low-bandwidth conditions. [19] 

 

9. FUTURE WORK 
 

Beyond gaming scenarios, future research should expand AI-assisted input methods into broader 

cross-domain applications. For example, in creative and professional work, tasks such as video 

editing, music production, programming, and 3D modeling also rely heavily on shortcuts and 

macros [15]. With AI-driven layout optimization, users could achieve faster workflows, reduced 

setup time, and greater consistency, thereby enhancing productivity. Similarly, this approach 

shows potential in education, rehabilitation, and accessible workplaces, where lowering the 

interaction barrier can provide more inclusive digital experiences for diverse user groups.[16] 

 

At the same time, future systems should incorporate adaptive learning mechanisms, allowing 

layouts to not only be optimized globally but also gradually personalized to reflect each user’s 

long-term habits. By learning from interaction history, AI could dynamically adjust shortcut 

priorities, key positions, and macro sequences, creating highly individualized input 

configurations. For disabled users, the system could adapt to their physical conditions over time, 

automatically simplifying high-effort actions and supporting more sustainable interaction. Such 

adaptive capabilities would ensure that the system evolves alongside the user, fostering both skill 

development and long-term efficiency. 
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