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ABSTRACT

Floods are destructive and frequent natural disasters. Because of this, machine learning models have been
developed in an attempt to predict flooding. Furthermore, this project aims to review a variety of methods
such as Long Short-Term Memory (LSTM), LightGBM, Multilayer Perceptron, Support Vector Machine,
and Random Forests in their ability to predict floods using a multivariate dataset of historical flood data
from Bangladesh (1949-2014) and a time-series dataset for the Minnesota River (2019-2025). The
performance metrics of interest for this project were accuracy, precision, recall, F1-Score, Mean Square
Error (MSE) and its root (RMSE), Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE). In
addition, confusion matrices and ROC curves were developed in order to judge model performance. From
this project, the LightGBM model worked best for the Bangladesh data while the LSTM worked best for the
time-series data. In addition, the most important features for the LightGBM model were rainfall, recording
location, and year.
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1. INTRODUCTION

Among the most destructive and frequent natural disasters are floods. Floods cause a huge and
extensive loss of life, infrastructure, and disrupt countries or regions socio-economic systems to
be disrupted [2]. According to the United Nations Office for Disaster Risk Reduction (UNDRR),
floods have affected billions of people in the past twenty years all over the world. Such natural
disasters driven by climate change at its current rate of occurrence and its intensity highlight an
urgent need for systems that alert about floods. Previously, flood warning systems used in the
past ten years relied on physical apparatuses such as hydrological and hydraulic models.
However, such systems can be less accurate due to their constant need for calibration and the
input of high-resolution data, which causes issues in regions where data is limited.

On the other hand, such alert systems have seen a significant change due to the advancement of
Machine Learning (ML), which has provided a good platform for such systems to function by
providing complex, nonlinear relationships between meteorological and hydrological variables.
However, such an advancement has its downsides from challenges and limitations in selecting the
most suitable approach for the specific hydrological contexts of the country or region, creating
gaps in previous research which this research aims to fill.

Regardless of the promising results of machine learning-based flood prediction systems, some
challenges remain unaddressed in existing studies. Flood datasets are often imbalanced with non-
flood events occurring more frequently than flood events, which can bias the model performance.
Additionally, model performance is strongly influenced by the data’s structure and regional and
hydrological characteristics, which can raise concerns about generalization across different
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climates and geographical regions. Motivated by these challenges, this study aims to
systematically evaluate and compare different machine learning models across two distinct
datasets, one multivariate dataset from Bangladesh and one time-series river height dataset from
the Minnesota River. This research aims to conduct a comparative assessment of model
performance under imbalanced conditions using multiple evaluation metrics, an analysis of
model performance based on data characteristics, and a comparison of different datasets for
different flood occurrences to adapt the model to the collected data and an evaluation of feature
importance to improve the reliability of flood prediction models.

2. RELATED WORK

Previous research has built its findings extensively on physical-based and data-driven
approaches, yet as mentioned before, previous models require constant calibration and high-
resolution data, as well as computational resources to process the data provided [3][4]. Such
approaches have limited their applicability in certain operational contexts, which drove recent
research to rely heavily on ML methods to overcome such challenges and create methods for
flood prediction.

In some of the literature reviewed, such as Ghorpade et al. [3], several ML models were used as
references for flood forecasting by studying the algorithms used, including but not limited to
Decision Trees, Linear Regression, Support Vector Machines (SVM), Artificial Neural Networks
(ANNs), and ensemble methods. Some findings indicated that Long Short-Term Memory
(LSTM) networks were able to identify nonlinear hydrological relationships far better than
traditional statistical approaches. While Mosavi et al. [4] identified several other ML models used
in flood prediction that used hybrid and ensemble algorithms, highlighting their effectiveness,
such findings concluded that merging several algorithms with other physical models further
improves the robustness, accuracy, and generalization of the initial findings of the intended
model.

In addition, flood forecasting models such as the ones noted above have been reviewed by
Akinsoji et al. [7], and the authors note that optimization algorithms such as Grasshopper
Optimization and Differential Evolution were used to refine model parameters. Next, Maspo et
al. [8] performed another review of flood prediction models and discovered that the most
common performance metrics used in studies include Mean Square Error (MSE), Root Mean
Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and the correlation coefficient
(R?). Finally, Kruti et al. [9] developed three models for flood prediction, namely Decision Tree,
Random Forest, and Gradient Boosting, and identified the Decision Tree as the most accurate.

Nevo et al. [2] experimented with the operational implementation of ML-based systems using
Google’s end-to-end flood forecasting system in India and Bangladesh as a reference for their
research. Google used LSTM and a novel inundation model stage forecasting approach and
included two techniques: thresholding and manifold. The combination of both the models and
approaches resulted in improved operational accuracy, alongside the manifold approach
providing computational support. This combination proved more effective than physics-based
hydraulic simulations. In another study by Nevo et al. [5], the authors underlined the deployment
of water-level-based hydrological and morphological inundation models that showed high
accuracy and low data requirements, demonstrating high scalability for flood forecasting.

Following the previous study where Bangladesh was used as an example, Syeed et al. [4] utilized
Bangladesh rainfall data from 34 meteorological stations and compared Binary Logistic
Regression, Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), and Decision Tree
Classifier (DTC). This resulted in a high accuracy rating of 86.7% achieved by the logistic
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regression model by using only simple classifiers in a data-limited region for operational flood
forecasting. On the other hand, the ML4FF framework was introduced by Soares et al. [6] for
flash flood forecasting in Brazil. This framework further expanded its scope to 34 ML methods
across 11 algorithmic classes, including deep learning, applied to the Bangalas River watershed,
which showcased the power and efficiency of the LSTM model. This highlighted the
effectiveness of automated model selection for flash flood prediction and hyperparameter
optimization in complex urban watersheds.

Such research proves that traditional approaches are no longer able to provide the same accuracy,
scalability, and operational feasibility when compared to ML methods for improving flood
forecasting. Nevertheless, challenges and gaps continue to persist in generalization across diverse
hydrological contexts, integration of heterogeneous data sources, and balancing prediction
accuracy with computational efficiency. This research further builds on these findings by
identifying models that have not been tested yet, while also experimenting with different
algorithms that can enhance accuracy and credibility of data.

3. METHODOLOGY

3.1. Datasets

For this project, two datasets were used. The first dataset is relevant to Minnesota in that it
contains time-series data from the Minnesota River. The dataset recorded river height in feet,
collected by the US Geological Survey at Mankato, Minnesota, from 2019 to 2025 every 15
minutes. A chart containing this time-series data is shown in Figure 1 below. In addition to that
dataset, the second dataset comes from Bangladesh and contains more data. To be specific, the
Bangladesh dataset contains 20,544 observations and 18 features, which are shown in Table 1
below. In addition, the dataset was recorded from 1949 to 2014. The features were mostly
numeric, and there were no missing data values. Finally, the dataset contained 16,412 non-flood
observations and 4,132 flood observations, implying a moderate imbalance in the dataset, which
may make the models biased toward predicting non-floods, particularly for Random Forests and
SVMs. Because of this, performance metrics beyond accuracy were used to measure model
performance.

Table 1. Bangladesh Data features

Name Type Unit
Station Name Categorical
Year Numerical
Month Categorical
Max Temp Numerical Celsius
Min Temp Numerical Celsius
Rainfall Numerical cm
Relative Humidity =~ Numerical Percentage
Wind Speed Numerical m/s
Cloud Coverage Numerical Okta
Bright Sunshine Numerical Hours/Day
Station Number Categorical
X Coordinate Numerical
Y Coordinate Numerical
Latitude Numerical
Longitude Numerical
Altitude Numerical m
Period Date Year.Month
Flood? Binary 1 = Yes, Blank = No
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Daily River Levels Over Time
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Fig. 1. Minnesota River Height
3.2. Data Processing

After identifying the datasets, the data must be preprocessed for the models. First, for the
Minnesota River data, since it was recorded every 15 minutes, the daily average was taken. Next,
the blank values for the Flood feature in the Bangladesh data were filled with zeros in order to
make it a binary variable. Afterwards, the features: Station Number, Latitude, Longitude, and
Period were removed since their roles are satisfied by other variables. Next, the remaining
categorical variables were encoded with a Label Encoder to replace the categories with numbers.
Next, the numerical features were scaled with a Standard Scaler for the Bangladesh data and
Min-Max Normalization for the Minnesota data. Finally, the data was split into a training set with
80% of the data and a test set with the remaining 20%. For the Bangladesh data, this yielded a
training dataset containing 16,435 observations and a test dataset containing 4,109 observations.
In addition, since the Minnesota dataset is a time series, it was not shuffled to avoid data leakage.

3.3. Models

After preparing the data, several models were used for flood prediction and classification. The
first of these models is a time series model such as Long Short-Term Memory (LSTM) that are
good for time series forecasting and capturing temporal flood patterns. The next model of interest
is gradient boosting with LightGBM which handles tabular data efficiently and captures complex
feature interactions. Afterwards, there is a Multilayer Perceptron (MLP) called MLPRegressor
which learns nonlinear relationships between factors. Then, there are support vector machines
with a variety of kernels that can be used for flood classification. Finally, there are Random
Forests which reduce overfitting and work well with mixed datasets.

3.4. Performance Metrics

Finally, after creating the models with training data and making estimations on the test data, the
validity of the models was examined with various performance metrics. The first performance
metrics of interest used with classifiers are accuracy, precision, recall, and the F-1 score. In
addition to these metrics, a confusion matrix can be used with classifiers to give a detailed
breakdown of correct versus incorrect predictions while the ROC curve can be used to determine
how well the models can distinguish between positive and negative cases. For the time series
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models, MSE and its root (RMSE) will be the metrics of interest since they are used with
continuous data. The last two performance metrics are more related to hydrology and are the
Nash-Sutcliffe Efficiency (NSE) which shows how well predictions match observations and the
Kling-Gupta Efficiency (KGE) which assesses correlation, bias, and variability.

4. RESULTS AND DISCUSSION

Using the Minnesota River data, the LSTM model produced a test RMSE of 0.017, a test KGE of
0.993, and a test NSE of 0.993. With a low RMSE and high KGE and NSE, this model was
accurate in predicting time-series data. In addition, the LightGBM model generated a test RMSE
of 0.037, a test KGE of 0.937, and a test NSE of 0.957. While these performance metrics are
slightly greater or lower than those from the LSTM model, the LightGBM model was still
accurate with the data. Due to the better performance metrics, it appears that the LSTM model is
the best one for the Minnesota River data. Furthermore, other models were not used with this data
because they focused on classification rather than regression.

As for the Bangladesh dataset, all of the proposed models were utilized and trained on the data.
The following paragraphs show the results when the models were tested with the test data.

Table Il . performance comparison across all models.

Model Accuracy Precision Recall Fl-score MSE RMSE NSE KGE
Random Forest 0.9754 0.9437 0.9334 0.9385 0.0246 0.1568 0.8470 0.9223
LightGBM 0.9786 0.9467 0.9467 0.9467 0.0214 0.1463 08667 0.9333
SVM 0.9628 0.9129 0.9007 0.9068 0.0372  0.1930 0.7682  0.8827
MLP 0.9706 0.9201 0.9346 0.9273 0.0294 0.1716 08167 09074
LSTM 0.9611 0.9142 0.8898 0.9018 0.0389 0.1973 0.7576 0.8744

The model with the highest overall performance was LightGBM with an accuracy score of
97.86%, a precision score of 94.67%, and an F1-score of 94.67%.. This was followed by the next
best performing model which was Random Forest with an accuracy of 97.81% and a similar
precision and Fl1-score, which indicates that tree-based models have proven to be the most
effective for such flood indication systems.

Furthermore, other models such as MLP demonstrated their ability to capture nonlinear
relationships with results that competed with other models with an accuracy of 97.06% and an
F1-score of 90.18%. On the other hand, the last two models which are SVM and LSTM that have
shown good generalization ability despite their differences, have achieved a lower accuracy of
approximately 96.3% than other models.

Lastly, the LightGBM model showed the lowest RMSE (0.1463) in terms of error-based metrics
as well as the highest efficiency values (NSE=0.8667, KGE=0.9333). These results demonstrate
that the proposed models have shown robust predictive reliability and consistency.

In Figures 2-6, the confusion matrices for all the models are presented and this is where a clearer
picture emerges on a comparison basis for classification performance. The figures show the
distributions of true positives, true negatives, false positives, and false negatives, providing the
ability to visually assess how well each model can identify flood and non-flood events. Agreeing
with the performance metrics, LightGBM has achieved the best results of all models, resulting in
only 44 false negatives and 44 false positives which is approximately 2% of misclassifications,
indicating a balanced ability to detect both classes. Likewise, Random Forest showed similar
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performance, with slightly higher false negatives. The MLP model has also performed well,
maintaining a low number of misclassified events even though it has 50% higher false-positive
values in comparison to LightGBM. Lastly, the SVM and LSTM models showed higher false-
positive and false-negative values when compared to the previous models. LSTM, in particular,
has missed more actual flood cases due to the non-sequential structure of the Bangladesh dataset.
Outside of LightGBM and MLP, the models predicted more false negatives than false positives.
This could be due to the imbalanced nature of the dataset that was noted in Section 3.1. Overall,
the confusion matrices show that tree-based ensemble models provide the most reliable and stable
classification, while neural and kernel-based models tend to perform slightly lower.
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Fig. 2. Confusion matrix for the Random Forest model on the Bangladesh flood dataset, illustrating correct
and incorrect classifications of flood and non-flood events
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Fig. 3. Confusion matrix for the LightGBM model on the Bangladesh flood dataset, illustrating correct and
incorrect classifications of flood and non-flood
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Fig. 4. Confusion matrix for the Support Vector Machine model on the Bangladesh flood dataset,
illustrating correct and incorrect classifications of flood and non-flood events
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Fig. 5. Confusion matric for the Multilayer Perceptron model on the Bangladesh flood dataset, illustrating

correct and incorrect classifications of flood and non-flood events
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Fig. 6. Condusion matrix for the Long Short- Term Memory model on the Bangladesh flood dataset,
illustrating correct and incorrect classifications of flood and non-flood events

Since the classes within the Bangladesh dataset were imbalanced, we have further evaluated the
discriminative ability of all models using a Receiver Operating Characteristic (ROC) chart
shown in Figure 7. The Receiver Operating Characteristic — Area Under the Curve (ROC-
AUC) scores show that all models have performed well in separating between floods and non-
flood events, with each model achieving a score above 0.98.

T—
f
/

0.8 [

ROC Curves for Flood Prediction Models

o
o

True Positive Rate
e
s

0.2 = —— Random Forest (AUC = 0.996)
-~ LightGBM (AUC = 0.995)

—— SVM (AUC = 0.987)

—— MLP (AUC = 0.993)

0.0 z LSTM (AUC = 0.989)

0.0 0.2 0.4 06 0. 1.0
False Positive Rate

Fig. 7. ROC Curves for all flood prediction models evaluated on the Bangladesh dataset, illustrating each
model's ability to distinguish between flood and non-flood events

Random Forest has achieved the highest AUC score of 0.996, followed by LightGBM with
0.995, MLP with 0.993, LSTM with 0.989, and lastly SVM showed a strong AUC score of 0.987
as well. These results confirm that despite the performance differences in other evaluation
metrics such as precision and F1-score, all models have achieved near-perfect class separability
when it comes to the AUC metric, with the Random Forest providing the highest performance.

Regarding further interpretability, how the features affected the LightGBM model's decision

process was also studied. This was done by calculating the number of times that a feature was
used to split the data in the classification process. From this method, it appeared that the most
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important features in the model were the amount of rainfall, the station location, and the time of
recording. The full ranking of feature importance is shown in Figure 8 below.
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Fig 8. Feature importance ranking for the LightGBM model on the Bangladesh flood dataset, showing the
relative contribution of each input variable to the model's decision-making

Overall, it appears that the LightGBM model performed the best for a variety of reasons. First,
this model performed well because it handles categorical and numerical features with ease.
Second, it has built-in techniques to prevent overfitting which allows the model to generalize
well. Lastly, flooding is influenced by multiple interacting variables and LightGBM can handle
these interactions automatically. Moreover, Random Forest performed well since it handles noise,
outliers, and nonlinearities. Finally, the neural models such as LSTM did not perform as well
because the Bangladesh dataset is not connected in a continuous time sequence but rather in a
time sequence for each recording station. This also could explain why the LSTM model worked
better for the Minnesota data rather than the LightGBM model.

In general, the results compiled in this paper showed that the gradient boosting-based approach,
specifically the LightGBM model, provided superior performance and generalization across all
evaluated metrics. For flood prediction, LightGBM can be considered an efficient and reliable
model within the scope of this research. In addition, LSTM can also be used if the data were
sequential.

5. FURTHER RESEARCH

There are several directions for further research on this project. First, given that the Minnesota
River data only covered river height, more data from Minnesota, such as weather and other
recording points, should be collected. This could improve the generalizability of the models
because Minnesota and Bangladesh have different climates. In addition, other inputs such as
satellite data, soil moisture, and topographic variables could be incorporated in the models.
Second, given the high performance metrics, the models could be reviewed for potential data
leakage or overfitting. This could be done by splitting the data before applying data
transformations or by performing cross-validation. Additionally, the statistical rigor of the project
could be improved through confidence intervals or repeated experiments. Beyond individual
architectures, other models could be developed through hybridization. For example, a
Convolutional Neural Network (CNN) could be used for its effectiveness with spatial features
and then combined with the LSTM to learn temporal patterns to potentially develop a stronger
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prediction model. For spatial features, models can be developed with Geographic Information
Systems (GIS) to analyze flood data geographically using elevation, water flow, and spatial
patterns. Finally, a real-time forecasting model could be created with continuously updating
weather data to provide an early warning system for floods.

6. CONCLUSION

This research compares the performance of several machine learning models for flood prediction
using two distinct datasets: a meteorological dataset from Bangladesh and a time-series
river-height dataset from Minnesota. For the Bangladesh dataset, LightGBM has provided the
highest overall performance across the accuracy, precision, recall, Fl-score, NSE, and KGE.
However, Random Forest has also performed competitively and achieved the highest ROC-AUC
score, showing a strong class separability. Other evaluated models have also achieved high scores
but were slightly less effective in comparison to LightGBM and Random Forest.

For the Minnesota time-series dataset, LSTM achieved the highest accuracy and performed better
than other models due to its capability in learning the time-dependent patterns. This shows that
the type of data has a strong influence on model performance. Boosting models tend to perform
well with tabular data, while neural networks such as LSTM perform better with time-series data.
The study notes the potential of machine learning methods in flood forecasting systems and
shows the importance of selecting the machine learning model that aligns best with the structure
of the data within that system, as well as the importance of certain features and their influence on
flood prediction. Future improvements may be achieved by including more hydrological
variables, incorporating satellite and GIS-based spatial features, and developing hybrid
deep-learning architectures for more accurate real-time flood prediction.
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