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ABSTRACT 
 
Floods are destructive and frequent natural disasters. Because of this, machine learning models have been 

developed in an attempt to predict flooding. Furthermore, this project aims to review a variety of methods 

such as Long Short-Term Memory (LSTM), LightGBM, Multilayer Perceptron, Support Vector Machine, 

and Random Forests in their ability to predict floods using a multivariate dataset of historical flood data 

from Bangladesh (1949-2014) and a time-series dataset for the Minnesota River (2019-2025). The 

performance metrics of interest for this project were accuracy, precision, recall, F1-Score, Mean Square 

Error (MSE) and its root (RMSE), Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE). In 

addition, confusion matrices and ROC curves were developed in order to judge model performance. From 

this project, the LightGBM model worked best for the Bangladesh data while the LSTM worked best for the 

time-series data. In addition, the most important features for the LightGBM model were rainfall, recording 

location, and year. 
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1. INTRODUCTION 
 

Among the most destructive and frequent natural disasters are floods. Floods cause a huge and 
extensive loss of life, infrastructure, and disrupt countries or regions socio-economic systems to 

be disrupted [2]. According to the United Nations Office for Disaster Risk Reduction (UNDRR), 

floods have affected billions of people in the past twenty years all over the world. Such natural 
disasters driven by climate change at its current rate of occurrence and its intensity highlight an 

urgent need for systems that alert about floods. Previously, flood warning systems used in the 

past ten years relied on physical apparatuses such as hydrological and hydraulic models. 
However, such systems can be less accurate due to their constant need for calibration and the 

input of high-resolution data, which causes issues in regions where data is limited. 

 

On the other hand, such alert systems have seen a significant change due to the advancement of 
Machine Learning (ML), which has provided a good platform for such systems to function by 

providing complex, nonlinear relationships between meteorological and hydrological variables. 

However, such an advancement has its downsides from challenges and limitations in selecting the 
most suitable approach for the specific hydrological contexts of the country or region, creating 

gaps in previous research which this research aims to fill.  

 
Regardless of the promising results of machine learning-based flood prediction systems, some 

challenges remain unaddressed in existing studies. Flood datasets are often imbalanced with non-

flood events occurring more frequently than flood events, which can bias the model performance. 

Additionally, model performance is strongly influenced by the data’s structure and regional and 
hydrological characteristics, which can raise concerns about generalization across different 
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climates and geographical regions. Motivated by these challenges, this study aims to 
systematically evaluate and compare different machine learning models across two distinct 

datasets, one multivariate dataset from Bangladesh and one time-series river height dataset from 

the Minnesota River. This research aims to conduct a comparative assessment of model 

performance under imbalanced conditions using multiple evaluation metrics, an analysis of 
model performance based on data characteristics, and a comparison of different datasets for 

different flood occurrences to adapt the model to the collected data and an evaluation of feature 

importance to improve the reliability of flood prediction models. 
 

2. RELATED WORK 
 

Previous research has built its findings extensively on physical-based and data-driven 

approaches, yet as mentioned before, previous models require constant calibration and high-
resolution data, as well as computational resources to process the data provided [3][4]. Such 

approaches have limited their applicability in certain operational contexts, which drove recent 

research to rely heavily on ML methods to overcome such challenges and create methods for 
flood prediction. 

 

In some of the literature reviewed, such as Ghorpade et al. [3], several ML models were used as 
references for flood forecasting by studying the algorithms used, including but not limited to 

Decision Trees, Linear Regression, Support Vector Machines (SVM), Artificial Neural Networks 

(ANNs), and ensemble methods. Some findings indicated that Long Short-Term Memory 

(LSTM) networks were able to identify nonlinear hydrological relationships far better than 
traditional statistical approaches. While Mosavi et al. [4] identified several other ML models used 

in flood prediction that used hybrid and ensemble algorithms, highlighting their effectiveness, 

such findings concluded that merging several algorithms with other physical models further 
improves the robustness, accuracy, and generalization of the initial findings of the intended 

model. 

 
In addition, flood forecasting models such as the ones noted above have been reviewed by 

Akinsoji et al. [7], and the authors note that optimization algorithms such as Grasshopper 

Optimization and Differential Evolution were used to refine model parameters. Next, Maspo et 

al. [8] performed another review of flood prediction models and discovered that the most 
common performance metrics used in studies include Mean Square Error (MSE), Root Mean 

Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and the correlation coefficient 

(R²). Finally, Kruti et al. [9] developed three models for flood prediction, namely Decision Tree, 
Random Forest, and Gradient Boosting, and identified the Decision Tree as the most accurate. 

 

Nevo et al. [2] experimented with the operational implementation of ML-based systems using 

Google’s end-to-end flood forecasting system in India and Bangladesh as a reference for their 
research. Google used LSTM and a novel inundation model stage forecasting approach and 

included two techniques: thresholding and manifold. The combination of both the models and 

approaches resulted in improved operational accuracy, alongside the manifold approach 
providing computational support. This combination proved more effective than physics-based 

hydraulic simulations. In another study by Nevo et al. [5], the authors underlined the deployment 

of water-level-based hydrological and morphological inundation models that showed high 
accuracy and low data requirements, demonstrating high scalability for flood forecasting. 

 

Following the previous study where Bangladesh was used as an example, Syeed et al. [4] utilized 

Bangladesh rainfall data from 34 meteorological stations and compared Binary Logistic 
Regression, Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), and Decision Tree 

Classifier (DTC). This resulted in a high accuracy rating of 86.7% achieved by the logistic 
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regression model by using only simple classifiers in a data-limited region for operational flood 
forecasting. On the other hand, the ML4FF framework was introduced by Soares et al. [6] for 

flash flood forecasting in Brazil. This framework further expanded its scope to 34 ML methods 

across 11 algorithmic classes, including deep learning, applied to the Bangalas River watershed, 

which showcased the power and efficiency of the LSTM model. This highlighted the 
effectiveness of automated model selection for flash flood prediction and hyperparameter 

optimization in complex urban watersheds. 

 
Such research proves that traditional approaches are no longer able to provide the same accuracy, 

scalability, and operational feasibility when compared to ML methods for improving flood 

forecasting. Nevertheless, challenges and gaps continue to persist in generalization across diverse 
hydrological contexts, integration of heterogeneous data sources, and balancing prediction 

accuracy with computational efficiency. This research further builds on these findings by 

identifying models that have not been tested yet, while also experimenting with different 

algorithms that can enhance accuracy and credibility of data. 
 

3. METHODOLOGY 
 

3.1. Datasets 
 

For this project, two datasets were used. The first dataset is relevant to Minnesota in that it 

contains time-series data from the Minnesota River. The dataset recorded river height in feet, 
collected by the US Geological Survey at Mankato, Minnesota, from 2019 to 2025 every 15 

minutes. A chart containing this time-series data is shown in Figure 1 below. In addition to that 

dataset, the second dataset comes from Bangladesh and contains more data. To be specific, the 
Bangladesh dataset contains 20,544 observations and 18 features, which are shown in Table 1 

below. In addition, the dataset was recorded from 1949 to 2014. The features were mostly 

numeric, and there were no missing data values. Finally, the dataset contained 16,412 non-flood 

observations and 4,132 flood observations, implying a moderate imbalance in the dataset, which 
may make the models biased toward predicting non-floods, particularly for Random Forests and 

SVMs. Because of this, performance metrics beyond accuracy were used to measure model 

performance. 
 

Table 1 . Bangladesh Data features 
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Fig. 1. Minnesota River Height 

 

3.2. Data Processing 
 

After identifying the datasets, the data must be preprocessed for the models.  First, for the 

Minnesota River data, since it was recorded every 15 minutes, the daily average was taken. Next, 

the blank values for the Flood feature in the Bangladesh data were filled with zeros in order to 
make it a binary variable. Afterwards, the features: Station Number, Latitude, Longitude, and 

Period were removed since their roles are satisfied by other variables. Next, the remaining 

categorical variables were encoded with a Label Encoder to replace the categories with numbers. 
Next, the numerical features were scaled with a Standard Scaler for the Bangladesh data and 

Min-Max Normalization for the Minnesota data. Finally, the data was split into a training set with 

80% of the data and a test set with the remaining 20%. For the Bangladesh data, this yielded a 
training dataset containing 16,435 observations and a test dataset containing 4,109 observations. 

In addition, since the Minnesota dataset is a time series, it was not shuffled to avoid data leakage. 

 

3.3. Models 
 

After preparing the data, several models were used for flood prediction and classification. The 

first of these models is a time series model such as Long Short-Term Memory (LSTM) that are 
good for time series forecasting and capturing temporal flood patterns. The next model of interest 

is gradient boosting with LightGBM which handles tabular data efficiently and captures complex 

feature interactions. Afterwards, there is a Multilayer Perceptron (MLP) called MLPRegressor 
which learns nonlinear relationships between factors. Then, there are support vector machines 

with a variety of kernels that can be used for flood classification. Finally, there are Random 

Forests which reduce overfitting and work well with mixed datasets. 
 

3.4. Performance Metrics 
 
Finally, after creating the models with training data and making estimations on the test data, the 

validity of the models was examined with various performance metrics. The first performance 

metrics of interest used with classifiers are accuracy, precision, recall, and the F-1 score. In 
addition to these metrics, a confusion matrix can be used with classifiers to give a detailed 

breakdown of correct versus incorrect predictions while the ROC curve can be used to determine 

how well the models can distinguish between positive and negative cases. For the time series 
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models, MSE and its root (RMSE) will be the metrics of interest since they are used with 
continuous data. The last two performance metrics are more related to hydrology and are the 

Nash-Sutcliffe Efficiency (NSE) which shows how well predictions match observations and the 

Kling-Gupta Efficiency (KGE) which assesses correlation, bias, and variability. 

 

4. RESULTS AND DISCUSSION 
 

Using the Minnesota River data, the LSTM model produced a test RMSE of 0.017, a test KGE of 

0.993, and a test NSE of 0.993. With a low RMSE and high KGE and NSE, this model was 
accurate in predicting time-series data. In addition, the LightGBM model generated a test RMSE 

of 0.037, a test KGE of 0.937, and a test NSE of 0.957. While these performance metrics are 

slightly greater or lower than those from the LSTM model, the LightGBM model was still 

accurate with the data. Due to the better performance metrics, it appears that the LSTM model is 
the best one for the Minnesota River data. Furthermore, other models were not used with this data 

because they focused on classification rather than regression. 

 
As for the Bangladesh dataset, all of the proposed models were utilized and trained on the data. 

The following paragraphs show the results when the models were tested with the test data. 

 
Table II . performance comparison across all models. 

 

 
 

The model with the highest overall performance was LightGBM with an accuracy score of 
97.86%, a precision score of 94.67%, and an F1-score of 94.67%.. This was followed by the next 

best performing model which was Random Forest with an accuracy of 97.81% and a similar 

precision and F1-score, which indicates that tree-based models have proven to be the most 

effective for such flood indication systems. 
 

Furthermore, other models such as MLP demonstrated their ability to capture nonlinear 

relationships with results that competed with other models with an accuracy of 97.06% and an 
F1-score of 90.18%. On the other hand, the last two models which are SVM and LSTM that have 

shown good generalization ability despite their differences, have achieved a lower accuracy of 

approximately 96.3% than other models. 

 
Lastly, the LightGBM model showed the lowest RMSE (0.1463) in terms of error-based metrics 

as well as the highest efficiency values (NSE=0.8667, KGE=0.9333). These results demonstrate 

that the proposed models have shown robust predictive reliability and consistency. 
 

In Figures 2-6, the confusion matrices for all the models are presented and this is where a clearer 

picture emerges on a comparison basis for classification performance. The figures show the 
distributions of true positives, true negatives, false positives, and false negatives, providing the 

ability to visually assess how well each model can identify flood and non-flood events. Agreeing 

with the performance metrics, LightGBM has achieved the best results of all models, resulting in 

only 44 false negatives and 44 false positives which is approximately 2% of misclassifications, 
indicating a balanced ability to detect both classes. Likewise, Random Forest showed similar 



International Journal on Cybernetics & Informatics (IJCI) Vol.15, No.1, February 2026 

52 

performance, with slightly higher false negatives. The MLP model has also performed well, 
maintaining a low number of misclassified events even though it has 50% higher false-positive 

values in comparison to LightGBM. Lastly, the SVM and LSTM models showed higher false-

positive and false-negative values when compared to the previous models. LSTM, in particular, 

has missed more actual flood cases due to the non-sequential structure of the Bangladesh dataset. 
Outside of LightGBM and MLP, the models predicted more false negatives than false positives. 

This could be due to the imbalanced nature of the dataset that was noted in Section 3.1. Overall, 

the confusion matrices show that tree-based ensemble models provide the most reliable and stable 
classification, while neural and kernel-based models tend to perform slightly lower. 

 

 
 

Fig. 2. Confusion matrix for the Random Forest model on the Bangladesh flood dataset, illustrating correct 

and incorrect classifications of flood and non-flood events 

 

 
 

Fig. 3. Confusion matrix for the LightGBM model on the Bangladesh flood dataset, illustrating correct and 

incorrect classifications of flood and non-flood 
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Fig. 4. Confusion matrix for the Support Vector Machine model on the Bangladesh flood dataset, 

illustrating correct and incorrect classifications of flood and non-flood events 

 

 
 

Fig. 5. Confusion matric for the Multilayer Perceptron model on the Bangladesh flood dataset, illustrating 

correct and incorrect classifications of flood and non-flood events 
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Fig. 6. Condusion matrix for the Long Short- Term Memory model on the Bangladesh flood dataset, 

illustrating correct and  incorrect classifications of flood and non-flood events 

 

Since the classes within the Bangladesh dataset were imbalanced, we have further evaluated the 

discriminative ability of all models using a Receiver Operating Characteristic (ROC) chart 

shown in Figure 7. The Receiver Operating Characteristic – Area Under the Curve (ROC-

AUC) scores show that all models have performed well in separating between floods and non-
flood events, with each model achieving a score above 0.98. 

 

 
 
Fig. 7. ROC Curves for all flood prediction models evaluated on the Bangladesh dataset, illustrating each 

model's ability to distinguish between flood and non-flood events 

 
Random Forest has achieved the highest AUC score of 0.996, followed by LightGBM with 

0.995, MLP with 0.993, LSTM with 0.989, and lastly SVM showed a strong AUC score of 0.987 

as well. These results confirm that despite the performance differences in other evaluation 
metrics such as precision and F1-score, all models have achieved near-perfect class separability 

when it comes to the AUC metric, with the Random Forest providing the highest performance. 

 
Regarding further interpretability, how the features affected the LightGBM model's decision 

process was also studied. This was done by calculating the number of times that a feature was 

used to split the data in the classification process. From this method, it appeared that the most 
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important features in the model were the amount of rainfall, the station location, and the time of 
recording. The full ranking of feature importance is shown in Figure 8 below. 

 

 
 

Fig 8. Feature importance ranking for the LightGBM model on the Bangladesh flood dataset, showing the 
relative contribution of each input variable to the model's decision-making 

 

Overall, it appears that the LightGBM model performed the best for a variety of reasons. First, 

this model performed well because it handles categorical and numerical features with ease. 

Second, it has built-in techniques to prevent overfitting which allows the model to generalize 
well. Lastly, flooding is influenced by multiple interacting variables and LightGBM can handle 

these interactions automatically. Moreover, Random Forest performed well since it handles noise, 

outliers, and nonlinearities. Finally, the neural models such as LSTM did not perform as well 
because the Bangladesh dataset is not connected in a continuous time sequence but rather in a 

time sequence for each recording station. This also could explain why the LSTM model worked 

better for the Minnesota data rather than the LightGBM model. 
 

In general, the results compiled in this paper showed that the gradient boosting-based approach, 

specifically the LightGBM model, provided superior performance and generalization across all 

evaluated metrics. For flood prediction, LightGBM can be considered an efficient and reliable 
model within the scope of this research. In addition, LSTM can also be used if the data were 

sequential. 

 

5. FURTHER RESEARCH 
 

There are several directions for further research on this project. First, given that the Minnesota 

River data only covered river height, more data from Minnesota, such as weather and other 

recording points, should be collected. This could improve the generalizability of the models 
because Minnesota and Bangladesh have different climates. In addition, other inputs such as 

satellite data, soil moisture, and topographic variables could be incorporated in the models. 

Second, given the high performance metrics, the models could be reviewed for potential data 
leakage or overfitting. This could be done by splitting the data before applying data 

transformations or by performing cross-validation. Additionally, the statistical rigor of the project 

could be improved through confidence intervals or repeated experiments. Beyond individual 
architectures, other models could be developed through hybridization. For example, a 

Convolutional Neural Network (CNN) could be used for its effectiveness with spatial features 

and then combined with the LSTM to learn temporal patterns to potentially develop a stronger 
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prediction model. For spatial features, models can be developed with Geographic Information 
Systems (GIS) to analyze flood data geographically using elevation, water flow, and spatial 

patterns. Finally, a real-time forecasting model could be created with continuously updating 

weather data to provide an early warning system for floods. 

 

6. CONCLUSION 
 

This research compares the performance of several machine learning models for flood prediction 

using two distinct datasets: a meteorological dataset from Bangladesh and a time‑series 
river‑height dataset from Minnesota. For the Bangladesh dataset, LightGBM has provided the 

highest overall performance across the accuracy, precision, recall, F1‑score, NSE, and KGE. 

However, Random Forest has also performed competitively and achieved the highest ROC‑AUC 

score, showing a strong class separability. Other evaluated models have also achieved high scores 
but were slightly less effective in comparison to LightGBM and Random Forest. 

 

For the Minnesota time‑series dataset, LSTM achieved the highest accuracy and performed better 
than other models due to its capability in learning the time‑dependent patterns. This shows that 

the type of data has a strong influence on model performance. Boosting models tend to perform 

well with tabular data, while neural networks such as LSTM perform better with time‑series data. 
The study notes the potential of machine learning methods in flood forecasting systems and 

shows the importance of selecting the machine learning model that aligns best with the structure 

of the data within that system, as well as the importance of certain features and their influence on 

flood prediction. Future improvements may be achieved by including more hydrological 
variables, incorporating satellite and GIS‑based spatial features, and developing hybrid 

deep‑learning architectures for more accurate real‑time flood prediction. 
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